Interpreting, Training, and Distilling Seq2Seq Models

Alexander Rush (@harvardnlp)

(with Yoon Kim, Sam Wiseman, Hendrik Strobelt, Yuntian Deng, Allen Schmaltz) http://www.github.com/harvardnlp/seq2seq-talk/

at

Sequence-to-Sequence

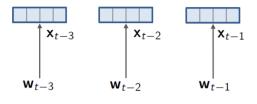
- Machine Translation (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014b; Cho et al., 2014; Bahdanau et al., 2014; Luong et al., 2015)
- Question Answering (Hermann et al., 2015)
- Conversation (Vinyals and Le, 2015) (Serban et al., 2016)
- Parsing (Vinyals et al., 2014)
- Speech (Chorowski et al., 2015; Chan et al., 2015)
- Caption Generation (Karpathy and Li, 2015; Xu et al., 2015; Vinyals et al., 2015)
- Video-Generation (Srivastava et al., 2015)
- NER/POS-Tagging (Gillick et al., 2016)
- Summarization (Rush et al., 2015)

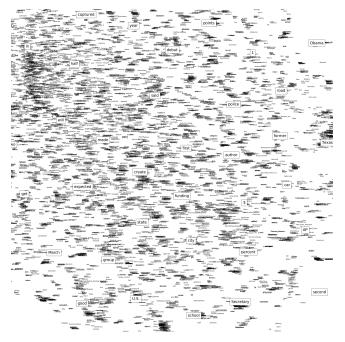
Sequence-to-Sequence

- Machine Translation (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014b; Cho et al., 2014; Bahdanau et al., 2014; Luong et al., 2015)
- Question Answering (Hermann et al., 2015)
- Conversation (Vinyals and Le, 2015) (Serban et al., 2016)
- Parsing (Vinyals et al., 2014)
- Speech (Chorowski et al., 2015; Chan et al., 2015)
- Caption Generation (Karpathy and Li, 2015; Xu et al., 2015; Vinyals et al., 2015)
- Video-Generation (Srivastava et al., 2015)
- NER/POS-Tagging (Gillick et al., 2016)
- Summarization (Rush et al., 2015)

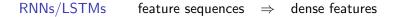
Seq2Seq Neural Network Toolbox

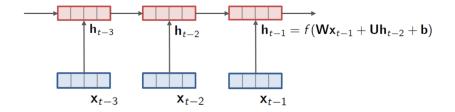
Embeddings	sparse features	\Rightarrow	dense features
RNNs	feature sequences	\Rightarrow	dense features
Softmax	dense features	\Rightarrow	discrete predictions

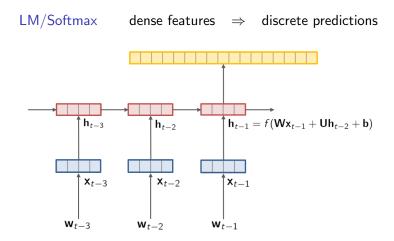




[Words Vectors]



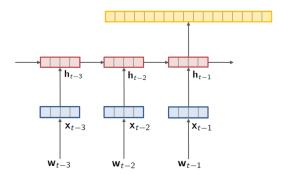




 $p(w_t|w_1,\ldots,w_{t-1};\theta) = \operatorname{softmax}(\mathbf{W}_{out}\mathbf{h}_{t-1} + \mathbf{b}_{out})$

$$p(w_{1:T}) = \prod_{t} p(w_t | w_1, \dots, w_{t-1})$$

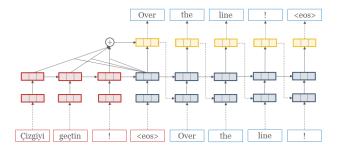
Contextual Language Model / "seq2seq"



• Key idea, contextual language model based on encoder *x*:

$$p(w_{1:T}|x) = \prod_{t} p(w_t|w_1, \dots, w_{t-1}, x)$$

Actual Seq2Seq / Encoder-Decoder / Attention-Based Models



- Different encoders, attention mechanisms, input feeding, ...
- Almost all models use LSTMs or other gated RNNs
- Large multi-layer networks necessary for good performance.
 - 4 layer, 1000 hidden dims is common for MT

Seq2Seq-Attn

- HarvardNLP's open-source system (Yoon Kim) http://github.com/harvardnlp/seq2seq-attn
- Used by SYSTRAN for 32 language pairs (Crego et al., 2016)

Text Translation

This demo platform allows you to experience Pure Neural™ machine translation based on the last Research community's findings and SYSTRAN's R&D. You can translate up to 2000 characters of text in the languages proposed below. Check out the information page to learn more.

English	× • 🔁 German		• Filter 🕄	Select a profile	
Translation on the internet		Übersetzung im Internet			Showing results for Translation c translation (translation) / Obersetzung (+ interpretation) english translation certified translation
					French translation machine translation
					♥ darüber ■ (↔ over) ♥ spät ■
					(*> late, subsequently) daran (*> most)
		40		(小) (2)	danach

Seq2Seq Applications: Neural Summarization (Rush et al., 2015)

Source (First Sentence)

Russian Defense Minister Ivanov called Sunday for the creation of a joint front for combating global terrorism.

Target (Title)

Russia calls for joint front against terrorism.

- (Mou et al., 2015) (Cheng and Lapata, 2016) (Toutanova et al., 2016) (Wang et al., 2016b) (Takase et al., 2016), among others
- Used by Washington Post to suggest headlines (Wang et al., 2016a)

Seq2Seq Applications: Neural Summarization (Rush et al., 2015)

Source (First Sentence)

Russian Defense Minister Ivanov called Sunday for the creation of a joint front for combating global terrorism.

Target (Title)

Russia calls for joint front against terrorism.

- (Mou et al., 2015) (Cheng and Lapata, 2016) (Toutanova et al., 2016) (Wang et al., 2016b) (Takase et al., 2016), among others
- Used by Washington Post to suggest headlines (Wang et al., 2016a)

Seq2Seq Applications: Grammar Correction (Schmaltz et al., 2016)

Source (Original Sentence)

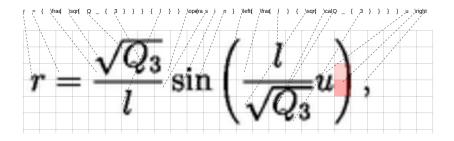
There is no a doubt, tracking systems has brought many benefits in this information age .

Target (Corrected Sentence)

There is no doubt, tracking systems have brought many benefits in this information age .

• 1st on BEA'11 grammar correction task (Daudaravicius et al., 2016)

Seq2Seq Applications: Im2Markup (Deng and Rush, 2016)



[Latex Example] [Project]

This Talk

- How can we interpret these learned hidden representations?
- How should we train these style of models?
- How can we shrink these models for practical applications?

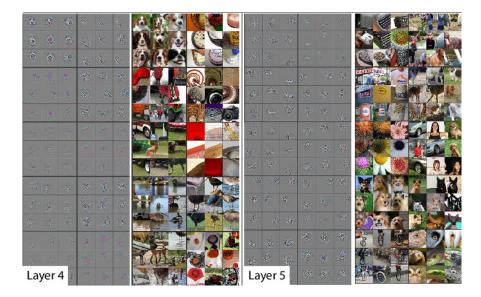
This Talk

• How can we interpret these learned hidden representations?

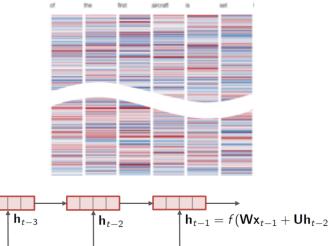
LSTMVis lstm.seas.harvard.edu

(Strobelt et al., 2016)

- How should we **train** these style of models? (Wiseman and Rush, 2016)
- How can we **shrink** these models for practical applications? (Kim and Rush, 2016)



Vector-Space RNN Representation





t	t	р	:	1	1	w	w	/ w	١.	у	n	e	t	n	e	w	s		с	o	m /	1		E	n	g	I.	i :	s ł	۱ -	I.	а	n	g u	a	g	e	v	v e	b	s	i.	t	B	0	f		L	s	r	a	e I	•	s		I.	а	r
t	p				w	W	W		b	а	С	a	h	e	t	s		с	0	m	1		-	x	g	1	i I	s I	n	1	i.	n	g	u a	g	е	s	a i	r	s	i.	t	е	0	b f		t	s	I.	а	е	I I	s		s	i.	n	5
	d		:	x	n	e		N	a	e	a			a	w	a	t	0	а			s	8	n	t	i.	а	ci	a -	s	a	r	d	e e	1	h		o a	ı n	Г	t	b	i :	5 8	a n	f	а	n	r	е	i i	f			а	а	t	d
m	w	-	2	-	p	i	i	i	s	0	e	s	s	i.	s		1	е	r	n	. (c]	(d	с	е	е	n	e	e p	е	s	a	a i	k	i.	1	e	e	1	е	d	h,	i	r	t	h	r	a	0	n	s e	э	١,	с	0	s	a
d	r		<	:	a	h	b	-	n	p	t	w	t		x	i		g	h	1	ma	a)	T	۰v	d	r	у	zi		c	0	u	e	d I	s	u	: 1	t H	a		0	0		t	u		s	t	u	i	f	1	v	e	p	e	r	y
s	t	p	,	t	с	0	a	2	d	r	u	I	w	0	c	I.	e	n	s	r]	р.	1	1	v	a	0	d,	,	e	у	t	c	n		d	m	. c	i	b	u	v	s]	lk	b		i	m	n s	u	L	t a	a	t	Ì	У	b	n

g	е	s	t		n	е	w	s	р	а	р	е	r		•	•	[[Y	е	d		0 1	h		Α	h	r	0	1 C	t	h	1]	•	•	•	•	•	Н	е	b	r	e	w	- 1	a	n	g	u	а	g	e	p	е	r	i.	o	d
е		t		а	а	w	s	p	а	p	е	r	s	0		[[Т	е	L				i	(f	е	а	n	еп	n t	i.	1		•			1	1	е	r	r	е	w	s I	•	n	g	u	а	g	е	: 8	a r	0	s	0	d	i i
i	r		s	с	0	е			е	n	а			i	т	Т	h	А	0	а	i I	n	n I	1	S	r	m	u	w		e	у			s			[1	i.	n	е	i i	a	' .	s i	v	/ d	d	е	•	h	s c	1	r	i	f	r	:
u	s			s	е	t	I.	g	0	r		s		a	s	a	t	С	a	r	e	e	g '	a	C	1	r	i I	s	z]	i	е	•	:	:	, ;	# :	: 1	r A	a	a	a	а	t	8	Ba	IS	e	e	i		0	i	a	n	f	v	T	
	-			t	u	а	е	v	r	t	i	d	,	t	в	Α	m	s	u	s	y	u	t]	1	A	s	а	0	i	j s	1	1	,			. :		s I	ΛВ	0	1	0	u	s		Τd) U	a	-	n	:	d	N	v o	a		р	n	u
а	,	d	,	i	i	u	i	t	i	С	р]	(L	s	v	н	v	t	u	s	u i	e	D	n	0	е	g	a r	0			,]	:	((C	u	i	b	0	h	e (сy	b	k	s	L	s	:	r -	e	p	с	n	t	s

i.	с	а	I.	s	:	1	•	•		*	•	•	L	I	G	I.	ο	b	e	s		1	1	•		L	h	t	t	p :	1	1	w	vw	/ w		g	I.	ο	b	e	s		с	ο.		1	1		1		b	u	s	i I	n e	s	s		d	а
С	а	L			•				•	1		•		т	a	а	b	а							([t	р			W	/ 14	v w		b	u	0	b	а	L		с	0	m	u	n /	s	A	١.	-	У	t	i	n	8 5	i s		a	e	t
s		t	I.	1								[h	A	е	0	v	e	I.	t			s		а	h	a		d		×	g	e	١.	N	a	0	i.	r		r	t	0	a	. (e	Ι.	i	Т		&	а	i		e	9		е	0	0	У
t	t	۰.	۰.					•	&	[&	&	m	С	0	e	r	0	n	е	۰.		:	,	i I	•	0	d	w	. ,	:	n	i.	i	i	s	а	а	u	е		e	n	i	1	0	ml	c	C	: .	(е	f	t	g i	r	T		i	i.	u
а	•	n	1		С	:	&	:	#	*	:	а	f	D	r	u	s	u	1	L		,			0	m	e	L		p٩	< ,	d	h	a	;	d	е	u	0	0	t	1	i	h	n	с	s i	f	S	ι,	Γ	u	r	h	0 :	6	t	,	t	u	n
n	k		i.		<]	:	&	1	1	s		Т	G	u	i.	t	r	s	i				:	b	а	с	m	r	-)	< t	p	0	b	-	g	r	е	s	i	s	L	e	r	L	n	a f	a	C)]	I.	0	s	р	t a	a c	۱,	i	f	r	m

i.	L	у		٠	•	•	[]		н	a					zI		н	r i	A	۱r	e	t	z	1	1	•	•		1	ı t	t	р	:	1	1	w v	vv	1.	h	а	а	r	е	t	z.		0		i.	I.	1	1		Re	• I	a	t	i	v
1	у		٠		1	[[]	r	e	r I	•	dI	n			F	e r	. 8	n	t	a	h	1	1		1				t	p				w	N V	ν.	b	0	n	m	d	s	t	. 1	c (п	n u	n	1	s		- (e s	a	t	e	0	i.
r	е			•		•	h	4	i	1	n I	n t	t	t	e I	H	a I	S	r	c	n	0	I.	۰.		s		a	n a	1	d		:	x	n	э.	V	/ a	а	m	r	t	d	h	e	o H		0	I.		С		& (D k	i	n	i	v	е
k	i.		:	•	s	С	0	5	a	n I		t		h	1	T i	1	n'	1	i	1	e				:	,	i I	m c	d	w	-	2	Ŷ	рI	n i	i	s	e	r	d	i	t		i I	n a	1	С	m	f	i		(;	a f	1	С	a	n	а
d	s	-	!	[t I	в	Τļ	2	o	m r	n	g I	d	1	1	W	ı c	۱		a		a	e	,	:			b	a e	e r	r		<	t	a i	b) -	d	u	I.	с	n	n	с	/	a r	n	e	s	i		1	I i	c	e) y	s	t	0
n	d	s	#	&	:	G	1	D	u	1	2	c :	s	a	0	S	J	2 1	t	e	T	1	z	L	,		:	0 '	c	n	t	1	,	:	e	o a	1 2	n	i	v	f	s	r	0	0	вi	u	ı n	а	L	а)	1	ı ۱	r v	r	0		

(Karpathy et al., 2015)

Example 1: Synthetic (Finite-State) Language

- Numbers are randomly generated, must match nesting level.
- Train a predict-next-word language model (decoder-only).

 $p(w_t|w_1,\ldots,w_{t-1})$

[Parens Example]

Example 2: Real Language

alphabet: all english words corpus: Project Gutenberg Children's books

• Train a predict-next-word language model (decoder-only).

 $p(w_t|w_1,\ldots,w_{t-1})$

[LM Example]

Example 3: Seq2Seq Encoder

alphabet: all english words corpus: Summarization

• Train a full seq2seq model, examine encoder LSTM.

[Summarization Example]

This Talk

- How can we **interpret** these learned hidden representations? (Strobelt et al., 2016)
- How should we train these style of models?

Sequence-to-Sequence Learning as Beam-Search Optimization

(Wiseman and Rush, 2016)

• How can we **shrink** these models for practical applications (Kim and Rush, 2016)?

Seq2Seq Notation

- x; source input
- \mathcal{V} ; vocabulary
- w_t ; random variable for the *t*-th target token with support \mathcal{V}
- $y_{1:T}$; ground-truth output
- $\hat{y}_{1:T}$; predicted output
- $p(w_{1:T} | x; \theta) = \prod_t p(w_t | w_{1:t-1}, x; \theta)$; model distribution

Seq2Seq Details

Train Objective: Given source-target pairs $(x, y_{1:T})$, minimize NLL of each word independently, conditioned on *gold* history $y_{1:t-1}$

$$\mathcal{L}_{\mathsf{NLL}}(\theta) = -\sum_{t} \log p(w_t = y_t | y_{1:t-1}, x; \theta)$$

Test Objective: Structured prediction

$$\hat{y}_{1:T} = \operatorname*{arg\,max}_{w_{1:T}} \sum_{t} \log p(w_t | w_{1:t-1}, x; \theta)$$

• Typical to approximate the rgmax with beam-search

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \gets \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

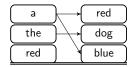
$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \operatorname{K-arg\,max}\, s(w, \hat{y}_{1:t-1}^{(k)})$$

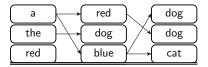


For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

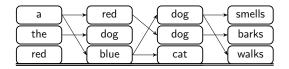


For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

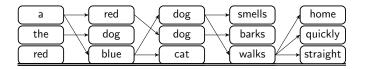


For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$



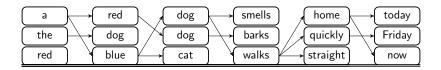
For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

Beam Search (K = 3)



For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

• Update beam:

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w, \hat{y}_{1:t-1}^{(k)})$$

Problem

How should we train sequence models?

Related Work

- Approaches to Exposure Bias, Label Bias:
 - Data as Demonstrator, Scheduled Sampling (Venkatraman et al., 2015; Bengio et al., 2015)
 - Globally Normalized Transition-Based Networks (Andor et al., 2016)
- RL-based approaches
 - MIXER (Ranzato et al., 2016)
 - Actor-Critic (Bahdanau et al., 2016)

Problem

How should we train sequence models?

Related Work

- Approaches to Exposure Bias, Label Bias:
 - Data as Demonstrator, Scheduled Sampling (Venkatraman et al., 2015; Bengio et al., 2015)
 - Globally Normalized Transition-Based Networks (Andor et al., 2016)
- RL-based approaches
 - MIXER (Ranzato et al., 2016)
 - Actor-Critic (Bahdanau et al., 2016)

Issue #1: Train/Test Mismatch (cf., (Ranzato et al., 2016))

$$\mathsf{NLL}(\theta) = -\sum_{t} \log p(w_t = y_t | y_{1:t-1}, x; \theta)$$

(a) Training conditions on *true* history ("Exposure Bias")(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

• Use a loss that incorporates sequence-level costs

Issue #1: Train/Test Mismatch (cf., (Ranzato et al., 2016))

$$\mathsf{NLL}(\theta) = -\sum_{t} \log p(w_t = y_t | y_{1:t-1}, x; \theta)$$

(a) Training conditions on *true* history ("Exposure Bias")(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates sequence-level costs

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

• $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

• $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

• $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

• $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam

Issue #2: Seq2Seq models next-word probabilities:

$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

(a) Sequence score is sum of locally normalized word-scores; gives rise to "Label Bias" (Lafferty et al., 2001)

(b) What if we want to train with sequence-level constraints?

Idea #2: Don't locally normalize

Issue #2: Seq2Seq models next-word probabilities:

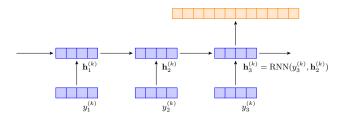
$$s(w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \log p(\hat{y}_{1:t-1}^{(k)}|x) + \log p(w|\hat{y}_{1:t-1}^{(k)}, x)$$

(a) Sequence score is sum of locally normalized word-scores; gives rise to "Label Bias" (Lafferty et al., 2001)

(b) What if we want to train with sequence-level constraints?

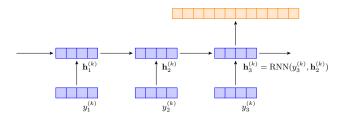
Idea #2: Don't locally normalize

BSO Idea #2: Don't locally normalize



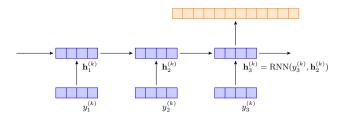
 $s(w, \hat{y}_{1:t-1}^{(k)}) = \log p(\hat{y}_{1:t-1}^{(k)} | x) + \log \operatorname{softmax}(\mathbf{W}_{out} \, \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out})$

BSO Idea #2: Don't locally normalize



$$\begin{split} s(w, \hat{y}_{1:t-1}^{(k)}) &= \log p(\hat{y}_{1:t-1}^{(k)} | x) + \log \operatorname{softmax}(\mathbf{W}_{out} \, \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out}) \\ &= \mathbf{W}_{out} \, \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out} \end{split}$$

BSO Idea #2: Don't locally normalize

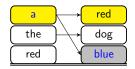


$$\begin{split} s(w, \hat{y}_{1:t-1}^{(k)}) &= \log p(\hat{y}_{1:t-1}^{(k)} | x) + \log \operatorname{softmax}(\mathbf{W}_{out} \, \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out}) \\ &= \mathbf{W}_{out} \, \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out} \end{split}$$

• Can set $s(w, \hat{y}_{1:t-1}^{(k)}) = -\infty$ if $(w, \hat{y}_{1:t-1}^{(k)})$ violates a hard constraint

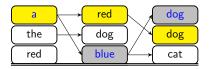
$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$



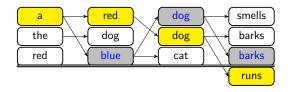
$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$



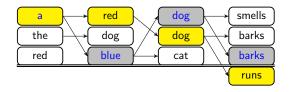
$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$



$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

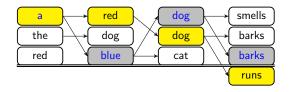
- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$



$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + \frac{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})}{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})} \right]$$

LaSO (Daumé III and Marcu, 2005):

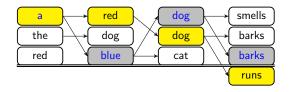
• If no margin violation at t-1, update beam as usual



$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + \frac{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})}{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})} \right]$$

LaSO (Daumé III and Marcu, 2005):

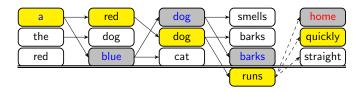
• If no margin violation at t-1, update beam as usual



$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + \frac{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})}{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})} \right]$$

LaSO (Daumé III and Marcu, 2005):

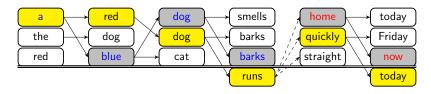
• If no margin violation at t-1, update beam as usual



$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + \frac{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})}{s(y_t^{(K)}, \hat{y}_{1:t-1}^{(K)})} \right]$$

LaSO (Daumé III and Marcu, 2005):

• If no margin violation at t-1, update beam as usual

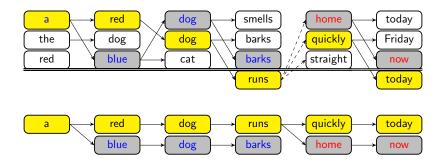


$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + \frac{s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)})}{s(y_t^{(K)}, \hat{y}_{1:t-1}^{(K)})} \right]$$

LaSO (Daumé III and Marcu, 2005):

• If no margin violation at t-1, update beam as usual

Backpropagation over Structure



Experiments

• Word Ordering, Dependency Parsing, Machine Translation

- Uses LSTM encoders and decoders, attention, input feeding
- All models trained with Adagrad (Duchi et al., 2011)
- Pre-trained with NLL; K increased gradually
- "BSO" uses unconstrained search; "ConBSO" uses constraints

	$K_e = 1$	$K_e = 5$	$K_e = 10$
	Word Ordering (BLEU)		
seq2seq	25.2	29.8	31.0
BSO	28.0	33.2	34.3
ConBSO	28.6	34.3	34.5
	Dependency Parsing (UAS/LAS) ¹		
seq2seq	87.33/82.26	88.53/84.16	88.66/84.33
BSO	86.91/82.11	91.00/ 87.18	91.17/ 87.41
ConBSO	85.11/79.32	91.25 /86.92	91.57 /87.26
	Machine Translation (BLEU)		
seq2seq	22.53	24.03	23.87
BSO, SB- Δ , K_t =6	23.83	26.36	25.48
XENT	17.74	20.10	20.28
DAD	20.12	22.25	22.40
MIXER	20.73	21.81	21.83

 $^1 \text{Note}$ Andor et al. (2016) have SOA, with 94.41/92.55.

This Talk

- How can we **interpret** these learned hidden representations? (Strobelt et al., 2016)
- How should we **train** these style of models? (Wiseman and Rush, 2016)
- How can we shrink these models for practical applications?

Sequence-Level Knowledge Distillation

(Kim and Rush, 2016)

Google unleashes deep learning tech on language with Neural ...

TechCrunch - Sep 27, 2016

Google has been working on a **machine** learning **translation** technique for years, and today is its official debut. The Google **Neural Machine** ...

Google Translate now converts Chinese into English with neural ... VentureBeat - Sep 27, 2016

Google announces Neural Machine Translation The Stack - Sep 28, 2016

Google announces Neural Machine Translation to improve Google ...

Highly Cited - ZDNet - Sep 27, 2016

Google is using Neural Networks for Chinese to English machine ...

Opinion - Firstpost - Sep 28, 2016

Google announces **neural** network to improve **machine translation** In-Depth - Seeking Alpha - Sep 27, 2016

View all

SYSTRAN: 1st software provider to launch a Neural Machine ...

GlobeNewswire (press release) - Oct 17, 2016

In December, SYSTRAN will communicate the feedback received on Pure Neural TM Machine Translation, its roadmap and time to market plan ...

Iconic Integrates Custom Neural Machine Translation Into ...

Slator (press release) (subscription) - Oct 6, 2016 Dublin – October 6, 2016 – Iconic Translation Machines (Iconic), a leading Irish machine translation (MT) software and solutions provider, today ...

Neural Machine Translation

Excellent results on many language pairs, but need large models

- Original seq2seq paper (Sutskever et al., 2014a): 4-layers/1000 units
- Deep Residual RNNs (Zhou et al., 2016) : 16-layers/512 units
- Google's NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

 \implies Deployment is challenging!

Neural Machine Translation

Excellent results on many language pairs, but need large models

- Original seq2seq paper (Sutskever et al., 2014a): 4-layers/1000 units
- Deep Residual RNNs (Zhou et al., 2016) : 16-layers/512 units
- Google's NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

 \implies Deployment is challenging!

Related Work: Compressing Deep Models

- **Pruning**: Prune weights based on importance criterion (LeCun et al., 1990; Han et al., 2016; See et al., 2016)
- Knowledge Distillation: Train a *student* model to learn from a *teacher* model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Kuncoro et al., 2016). (Sometimes called "dark knowledge")

Knowledge Distillation (Bucila et al., 2006; Hinton et al., 2015)

- Train a larger teacher model first to obtain teacher distribution $q(\cdot)$
- Train a *smaller student* model $p(\cdot)$ to mimic the teacher

Word-Level Knowledge Distillation

Teacher distribution: $q(w_t \,|\, y_{1:t-1})$

$$\mathcal{L}_{\text{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid y_{1:t-1}; \theta)$$
$$\mathcal{L}_{\text{WORD-KD}} = -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \mid y_{1:t-1}) \log p(w_t = k \mid y_{1:t-1}; \theta)$$

Knowledge Distillation (Bucila et al., 2006; Hinton et al., 2015)

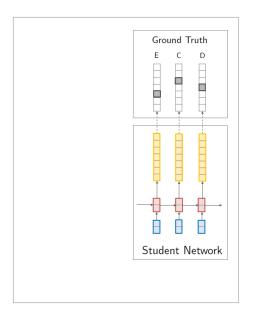
- Train a larger teacher model first to obtain teacher distribution $q(\cdot)$
- Train a *smaller student* model $p(\cdot)$ to mimic the teacher

Word-Level Knowledge Distillation

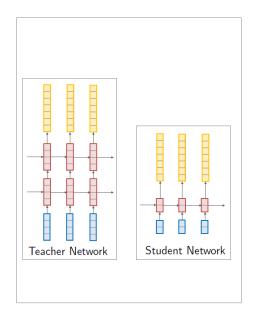
Teacher distribution: $q(w_t | y_{1:t-1})$

$$\begin{aligned} \mathcal{L}_{\text{NLL}} &= -\sum_{t} \sum_{k \in \mathcal{V}} \mathbbm{1}\{y_t = k\} \log p(w_t = k \,|\, y_{1:t-1}; \theta) \\ \mathcal{L}_{\text{WORD-KD}} &= -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \,|\, y_{1:t-1}) \log p(w_t = k \,|\, y_{1:t-1}; \theta) \end{aligned}$$

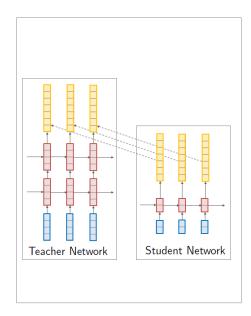
No Knowledge Distillation



Word-Level Knowledge Distillation



Word-Level Knowledge Distillation



Word-Level Knowledge Distillation Results

English \rightarrow German (WMT 2014)

Model	BLEU
4×1000 Teacher	19.5
2×500 Baseline (No-KD) 2×500 Student (Word-KD)	$17.6 \\ 17.7$
2×300 Baseline (No-KD) 2×300 Student (Word-KD)	$16.9 \\ 17.6$

This Work: Sequence-Level Knowledge Distillation

$$\mathcal{L}_{\text{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid y_{1:t-1})$$
$$\mathcal{L}_{\text{WORD-KD}} = -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \mid y_{1:t-1}) \log p(w_t = k \mid y_{1:t-1})$$

Instead minimize cross-entropy, between q and p implied sequence-distributions

$$\mathcal{L}_{\mathsf{SEQ-KD}} = -\sum_{w_{1:T} \in \mathcal{V}^T} q(w_{1:T} \,|\, x) \log p(w_{1:T} \,|\, x)$$

Sum over an exponentially-sized set \mathcal{V}^T .

This Work: Sequence-Level Knowledge Distillation

$$\mathcal{L}_{\text{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid y_{1:t-1})$$
$$\mathcal{L}_{\text{WORD-KD}} = -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \mid y_{1:t-1}) \log p(w_t = k \mid y_{1:t-1})$$

Instead minimize cross-entropy, between q and p implied sequence-distributions

$$\mathcal{L}_{\mathsf{SEQ-KD}} = -\sum_{w_{1:T} \in \mathcal{V}^T} q(w_{1:T} \mid x) \log p(w_{1:T} \mid x)$$

Sum over an exponentially-sized set \mathcal{V}^T .

Approximate $q(w \,|\, x)$ with mode

 $q(w_{1:T} | x) \approx \mathbb{1}\{ \operatorname*{arg\,max}_{w_{1:T}} q(w_{1:T} | x) \}$

Approximate mode with beam search

 $\hat{y} \approx \operatorname*{arg\,max}_{w_{1:T}} q(w_{1:T} \mid x)$

Simple model: train the student model on \hat{y} with NLL

Approximate $q(w \,|\, x)$ with mode

$$q(w_{1:T} | x) \approx \mathbb{1}\{ \operatorname*{arg\,max}_{w_{1:T}} q(w_{1:T} | x) \}$$

Approximate mode with beam search

 $\hat{y} \approx \operatorname*{arg\,max}_{w_{1:T}} q(w_{1:T} \mid x)$

Simple model: train the student model on \hat{y} with NLL

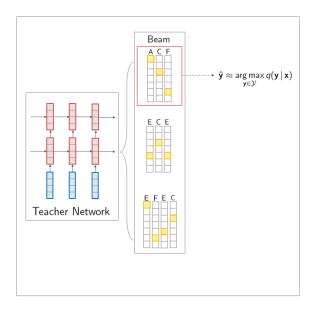
Approximate $q(w \,|\, x)$ with mode

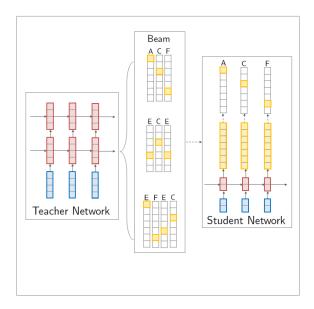
$$q(w_{1:T} | x) \approx \mathbb{1}\{ \operatorname*{arg\,max}_{w_{1:T}} q(w_{1:T} | x) \}$$

Approximate mode with beam search

$$\hat{y} \approx \operatorname*{arg\,max}_{w_{1:T}} q(w_{1:T} \mid x)$$

Simple model: train the student model on \hat{y} with NLL





Sequence-Level Interpolation

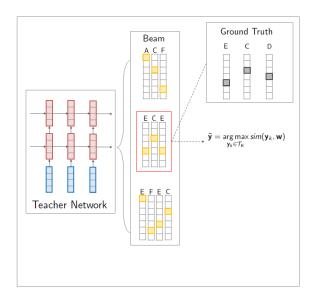
Word-level knowledge distillation

$$\mathcal{L} = \alpha \mathcal{L}_{\mathsf{WORD-KD}} + (1 - \alpha) \mathcal{L}_{\mathsf{NLL}}$$

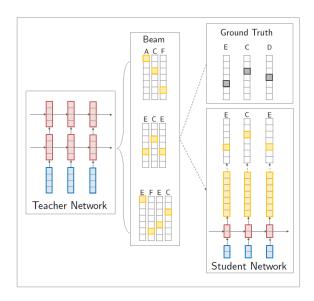
Training the student towards the mixture of teacher/data distributions.

How can we incorporate ground truth data at the sequence-level?

Sequence-Level Interpolation



Sequence-Level Interpolation



Experiments on English \rightarrow German (WMT 2014)

- Word-KD: Word-level Knowledge Distillation
- Seq-KD: Sequence-level Knowledge Distillation with beam size K=5
- Seq-Inter: Sequence-level Interpolation with beam size K = 35.
 Fine-tune from pretrained Seq-KD (or baseline) model with smaller learning rate.

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	—	6.7	1.3%
$\begin{array}{l} 2\times 500 \\ \text{Student} \end{array}$	14.7	_	17.6	_	8.2	0.9%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	_	6.7	1.3%
2×500 Student Word-KD	$14.7 \\ 15.4$	_ +0.7	17.6 17.7	_ +0.1	8.2 8.0	0.9% 1.0%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	_	6.7	1.3%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	_	6.7	1.3%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%
Seq-Inter	18.9	+4.2	19.3	+1.7	15.8	7.6%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000						
Teacher	17.7	_	19.5	_	6.7	1.3%
Seq-Inter	19.6	+1.9	19.8	+0.3	10.4	8.2%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%
Seq-Inter	18.9	+4.2	19.3	+1.7	15.8	7.6%

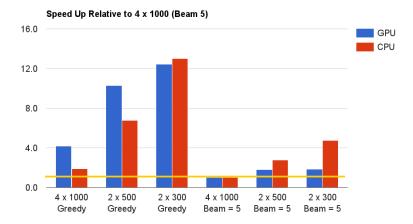
Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000						
Teacher	17.7	_	19.5	_	6.7	1.3%
Seq-Inter	19.6	+1.9	19.8	+0.3	10.4	8.2%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%
Seq-Inter	18.9	+4.2	19.3	+1.7	15.8	7.6%

Many more experiments (different language pairs, combining configurations, different sizes etc.) in paper

An Application

[App]

Decoding Speed



Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to word embedding tables)

- 4×1000 : 221 million
- 2×500 : 84 million
- 2×300 : 49 million

Prune student model: Same methodology as See et al. (2016)

- Prune x% of weights based on absolute value
- Fine-tune pruned model (crucial!)

Combining Knowledge Distillation and Pruning

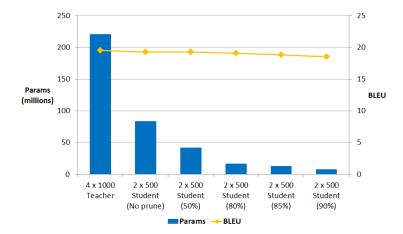
Number of parameters still large for student models (mostly due to word embedding tables)

- 4×1000 : 221 million
- 2×500 : 84 million
- 2×300 : 49 million

Prune student model: Same methodology as See et al. (2016)

- Prune x% of weights based on absolute value
- Fine-tune pruned model (crucial!)

Combining Knowledge Distillation and Pruning

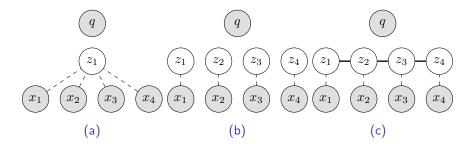


Conclusion: Other work

- How can we interpret these learned hidden representations?
 - Lei et al. (2016) other methods for interpreting decisions (as opposed to states).
- How should we train these style of models?
 - Lee et al. (2016) CCG parsing (backprop through search is a thing now/again)
- How can we shrink these models for practical applications?
 - Live deployment: (greedy) student outperforms (beam search) teacher. (Crego et al., 2016)
 - Can compress an ensemble into a single model (Kuncoro et al., 2016)

Coming Work

• Structured Attention Networks (Kim et al 2016)



Thanks!

- Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and Collins, M. (2016). Globally Normalized Transition-Based Neural Networks. *arXiv*, cs.CL.
- Ba, L. J. and Caruana, R. (2014). Do Deep Nets Really Need to be Deep? In *Proceedings of NIPS*.
- Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., and Bengio, Y. (2016). An Actor-Critic Algorithm for Sequence Prediction.
- Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. *CoRR*, abs/1409.0473.
- Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence prediction with recurrent neural networks. In Advances in Neural Information Processing Systems, pages 1171–1179.

References II

- Bucila, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model Compression. In *Proceedings of KDD*.
- Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2015). Listen, Attend and Spell. arXiv:1508.01211.
- Cheng, J. and Lapata, M. (2016). Neural summarization by extracting sentences and words. *arXiv preprint arXiv:1603.07252*.
- Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In *Proceedings* of *EMNLP*.
- Chorowski, J., Bahdanau, D., and Serdyuk, D. (2015). Attention-based models for speech recognition. *Advances in Neural*.
- Crego, J., Kim, J., and Senellart, J. (2016). Systran's pure neural machine translation system. *arXiv preprint arXiv:1602.06023*.

References III

- Daudaravicius, V., Banchs, R. E., Volodina, E., and Napoles, C. (2016). A Report on the Automatic Evaluation of Scientific Writing Shared Task. NAACL BEA11 Workshop, pages 53–62.
- Daumé III, H. and Marcu, D. (2005). Learning as search optimization: approximate large margin methods for structured prediction. In Proceedings of the Twenty-Second International Conference on Machine Learning {(ICML} 2005), pages 169–176.
- Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. *The Journal of Machine Learning Research*, 12:2121–2159.
- Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A. (2016). Multilingual Language Processing from Bytes. In *Proceedings of NAACL*.

References IV

- Han, S., Mao, H., and Dally, W. J. (2016). Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In *Proceedings of ICLR*.
- Hermann, K., Kocisky, T., and Grefenstette, E. (2015). Teaching machines to read and comprehend. *Advances in Neural*.
- Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural Network. arXiv:1503.0253.
- Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In *EMNLP*, pages 1700–1709.
- Karpathy, A., Johnson, J., and Li, F.-F. (2015). Visualizing and understanding recurrent networks. *ICLR Workshops*.
- Karpathy, A. and Li, F.-F. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3128–3137.

References V

Kim, Y. and Rush, A. M. (2016). Sequence-Level Knowledge Distillation.

- Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., and Smith, N. A. (2016).Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser.In *Proceedings of EMNLP*.
- Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In *Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001)*, pages 282–289.
- LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In *Proceedings of NIPS*.
- Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to Attention-based Neural Machine Translation. In *EMNLP*, number September, page 11.

References VI

- Mou, L., Yan, R., Li, G., Zhang, L., and Jin, Z. (2015). Backward and forward language modeling for constrained sentence generation. *arXiv preprint arXiv:1512.06612*.
- Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence Level Training with Recurrent Neural Networks. *ICLR*, pages 1–15.
- Rush, A. M., Chopra, S., and Weston, J. (2015). A Neural Attention Model for Abstractive Sentence Summarization. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), (September):379–389.
- Schmaltz, A., Kim, Y., Rush, A. M., and Shieber, S. M. (2016). Sentence-Level Grammatical Error Identification as Sequence-to-Sequence Correction.
- See, A., Luong, M.-T., and Manning, C. D. (2016). Compression of Neural Machine Translation via Pruning. In *Proceedings of CoNLL*.

References VII

- Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016). Building End-to-End Dialogue Systems Using Generative Hierarchical Neural Network Models. In *Proceedings of AAAI*.
- Srivastava, N., Mansimov, E., and Salakhutdinov, R. (2015). Unsupervised Learning of Video Representations using LSTMs. *Proceedings of ICML*.
- Strobelt, H., Gehrmann, S., Huber, B., Pfister, H., and Rush, A. M. (2016). Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks.
- Sutskever, I., Vinyals, O., and Le, Q. (2014a). Sequence to Sequence Learning with Neural Networks.
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014b). Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems, pages 3104–3112.
- Takase, S., Suzuki, J., Okazaki, N., Hirao, T., and Nagata, M. (2016). Neural headline generation on abstract meaning representation.

References VIII

- Toutanova, K., Tran, K. M., and Amershi, S. (2016). A dataset and evaluation metrics for abstractive compression of sentences and short paragraphs.
- Venkatraman, A., Boots, B., Hebert, M., and Bagnell, J. (2015). DATA AS DEMONSTRATOR with Applications to System Identification. *pdfs.semanticscholar.org*.
- Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2014). Grammar as a Foreign Language. In arXiv, pages 1–10.
- Vinyals, O. and Le, Q. (2015). A neural conversational model. *arXiv preprint* arXiv:1506.05869.
- Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and Tell: A Neural Image Caption Generator. In *Proceedings of CVPR*.
- Wang, S., Han, S., and Rush, A. M. (2016a). Headliner. Computation+Journalism.

References IX

- Wang, T., Chen, P., Amaral, K., and Qiang, J. (2016b). An experimental study of lstm encoder-decoder model for text simplification. *arXiv preprint arXiv:1609.03663*.
- Wiseman, S. and Rush, A. M. (2016). Sequence-to-Sequence Learning as Beam-Search Optimization.
- Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1606.09.08144.

References X

- Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. *ICML*.
- Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016). Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation. In *Proceedings of TACL*.