
Interpreting, Training, and Distilling Seq2Seq Models

Alexander Rush (@harvardnlp)

(with Yoon Kim, Sam Wiseman, Hendrik Strobelt, Yuntian Deng, Allen Schmaltz)

http://www.github.com/harvardnlp/seq2seq-talk/

at

http://www.github.com/harvardnlp/seq2seq-talk/

Sequence-to-Sequence

Machine Translation (Kalchbrenner and Blunsom, 2013; Sutskever et al.,

2014b; Cho et al., 2014; Bahdanau et al., 2014; Luong et al., 2015)

Question Answering (Hermann et al., 2015)

Conversation (Vinyals and Le, 2015) (Serban et al., 2016)

Parsing (Vinyals et al., 2014)

Speech (Chorowski et al., 2015; Chan et al., 2015)

Caption Generation (Karpathy and Li, 2015; Xu et al., 2015; Vinyals et al.,

2015)

Video-Generation (Srivastava et al., 2015)

NER/POS-Tagging (Gillick et al., 2016)

Summarization (Rush et al., 2015)

Sequence-to-Sequence

Machine Translation (Kalchbrenner and Blunsom, 2013; Sutskever et al.,

2014b; Cho et al., 2014; Bahdanau et al., 2014; Luong et al., 2015)

Question Answering (Hermann et al., 2015)

Conversation (Vinyals and Le, 2015) (Serban et al., 2016)

Parsing (Vinyals et al., 2014)

Speech (Chorowski et al., 2015; Chan et al., 2015)

Caption Generation (Karpathy and Li, 2015; Xu et al., 2015; Vinyals et al.,

2015)

Video-Generation (Srivastava et al., 2015)

NER/POS-Tagging (Gillick et al., 2016)

Summarization (Rush et al., 2015)

Seq2Seq Neural Network Toolbox

Embeddings sparse features ⇒ dense features

RNNs feature sequences ⇒ dense features

Softmax dense features ⇒ discrete predictions

Embeddings sparse features ⇒ dense features

[Words Vectors]

http://harvardnlp.github.io/seq2seq-talk/web/wordvecs.html

RNNs/LSTMs feature sequences ⇒ dense features

LM/Softmax dense features ⇒ discrete predictions

p(wt|w1, . . . , wt−1; θ) = softmax(Woutht−1 + bout)

p(w1:T) =
∏
t

p(wt|w1, . . . , wt−1)

Contextual Language Model / “seq2seq”

Key idea, contextual language model based on encoder x:

p(w1:T |x) =
∏
t

p(wt|w1, . . . , wt−1, x)

Actual Seq2Seq / Encoder-Decoder / Attention-Based Models

Different encoders, attention mechanisms, input feeding, ...

Almost all models use LSTMs or other gated RNNs

Large multi-layer networks necessary for good performance.

4 layer, 1000 hidden dims is common for MT

Seq2Seq-Attn

HarvardNLP’s open-source system (Yoon Kim)

http://github.com/harvardnlp/seq2seq-attn

Used by SYSTRAN for 32 language pairs (Crego et al., 2016)

[Demo]

http://github.com/harvardnlp/seq2seq-attn
http://demo-pnmt.systran.net

Seq2Seq Applications: Neural Summarization (Rush et al., 2015)

Source (First Sentence)

Russian Defense Minister Ivanov called Sunday for the creation of a

joint front for combating global terrorism.

Target (Title)

Russia calls for joint front against terrorism.

(Mou et al., 2015) (Cheng and Lapata, 2016) (Toutanova et al., 2016) (Wang

et al., 2016b) (Takase et al., 2016), among others

Used by Washington Post to suggest headlines (Wang et al., 2016a)

Seq2Seq Applications: Neural Summarization (Rush et al., 2015)

Source (First Sentence)

Russian Defense Minister Ivanov called Sunday for the creation of a

joint front for combating global terrorism.

Target (Title)

Russia calls for joint front against terrorism.

(Mou et al., 2015) (Cheng and Lapata, 2016) (Toutanova et al., 2016) (Wang

et al., 2016b) (Takase et al., 2016), among others

Used by Washington Post to suggest headlines (Wang et al., 2016a)

Seq2Seq Applications: Grammar Correction (Schmaltz et al., 2016)

Source (Original Sentence)

There is no a doubt, tracking systems has brought many benefits in this

information age .

Target (Corrected Sentence)

There is no doubt, tracking systems have brought many benefits in this

information age .

1st on BEA’11 grammar correction task (Daudaravicius et al., 2016)

Seq2Seq Applications: Im2Markup (Deng and Rush, 2016)

[Latex Example]

[Project]

https://harvardnlp.github.io/seq2seq-talk/web/math.html
http://lstm.seas.harvard.edu/latex

This Talk

How can we interpret these learned hidden representations?

How should we train these style of models?

How can we shrink these models for practical applications?

This Talk

How can we interpret these learned hidden representations?

LSTMVis lstm.seas.harvard.edu

(Strobelt et al., 2016)

How should we train these style of models? (Wiseman and Rush,

2016)

How can we shrink these models for practical applications? (Kim

and Rush, 2016)

https://lstm.seas.harvard.edu/

(?)

Vector-Space RNN Representation

(Karpathy et al., 2015)

Example 1: Synthetic (Finite-State) Language

Numbers are randomly generated, must match nesting level.

Train a predict-next-word language model (decoder-only).

p(wt|w1, . . . , wt−1)

[Parens Example]

http://lstm.seas.harvard.edu/client/pattern_finder.html?data_set=00parens&source=states::states2&pos=150

Example 2: Real Language

alphabet: all english words

corpus: Project Gutenberg Children’s books

Train a predict-next-word language model (decoder-only).

p(wt|w1, . . . , wt−1)

[LM Example]

http://lstm.seas.harvard.edu/client/pattern_finder.html?data_set=05childbook&source=states::states1&pos=100

Example 3: Seq2Seq Encoder

alphabet: all english words

corpus: Summarization

Train a full seq2seq model, examine encoder LSTM.

[Summarization Example]

http://lstm.seas.harvard.edu/client/pattern_finder.html?data_set=20autoencoder&source=states::states2&pos=100

This Talk

How can we interpret these learned hidden representations?

(Strobelt et al., 2016)

How should we train these style of models?

Sequence-to-Sequence Learning as Beam-Search Optimization

(Wiseman and Rush, 2016)

How can we shrink these models for practical applications (Kim and

Rush, 2016)?

Seq2Seq Notation

x; source input

V; vocabulary

wt; random variable for the t-th target token with support V

y1:T ; ground-truth output

ŷ1:T ; predicted output

p(w1:T |x; θ) =
∏

t p(wt|w1:t−1, x; θ); model distribution

Seq2Seq Details

Train Objective: Given source-target pairs (x, y1:T), minimize NLL of

each word independently, conditioned on gold history y1:t−1

LNLL(θ) = −
∑
t

log p(wt = yt|y1:t−1, x; θ)

Test Objective: Structured prediction

ŷ1:T = arg max
w1:T

∑
t

log p(wt|w1:t−1, x; θ)

Typical to approximate the arg max with beam-search

Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a red

the dog

red blue

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a red dog

the dog dog

red blue cat

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a red dog smells

the dog dog barks

red blue cat walks

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a red dog smells home

the dog dog barks quickly

red blue cat walks straight

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Beam Search (K = 3)

a red dog smells home today

the dog dog barks quickly Friday

red blue cat walks straight now

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)

Problem

How should we train sequence models?

Related Work

Approaches to Exposure Bias, Label Bias:

Data as Demonstrator, Scheduled Sampling (Venkatraman et al.,

2015; Bengio et al., 2015)

Globally Normalized Transition-Based Networks (Andor et al., 2016)

RL-based approaches

MIXER (Ranzato et al., 2016)

Actor-Critic (Bahdanau et al., 2016)

Problem

How should we train sequence models?

Related Work

Approaches to Exposure Bias, Label Bias:

Data as Demonstrator, Scheduled Sampling (Venkatraman et al.,

2015; Bengio et al., 2015)

Globally Normalized Transition-Based Networks (Andor et al., 2016)

RL-based approaches

MIXER (Ranzato et al., 2016)

Actor-Critic (Bahdanau et al., 2016)

Issue #1: Train/Test Mismatch (cf., (Ranzato et al., 2016))

NLL(θ) = −
∑
t

log p(wt = yt|y1:t−1, x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates sequence-level costs

Issue #1: Train/Test Mismatch (cf., (Ranzato et al., 2016))

NLL(θ) = −
∑
t

log p(wt = yt|y1:t−1, x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates sequence-level costs

BSO Idea #1: Use a loss that incorporates sequence-level costs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

BSO Idea #1: Use a loss that incorporates sequence-level costs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

BSO Idea #1: Use a loss that incorporates sequence-level costs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

BSO Idea #1: Use a loss that incorporates sequence-level costs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

∆(ŷ
(K)
1:t) allows us to scale loss by badness of predicting ŷ

(K)
1:t

Issue #2: Seq2Seq models next-word probabilities:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” (Lafferty et al., 2001)

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize

Issue #2: Seq2Seq models next-word probabilities:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” (Lafferty et al., 2001)

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize

BSO Idea #2: Don’t locally normalize

h
(k)
1 h

(k)
2 h

(k)
3 = RNN(y

(k)
3 ,h

(k)
2)

y
(k)
1 y

(k)
2 y

(k)
3

s(w, ŷ
(k)
1:t−1) = log p(ŷ

(k)
1:t−1|x) + log softmax(Wout h

(k)
t−1 + bout)

BSO Idea #2: Don’t locally normalize

h
(k)
1 h

(k)
2 h

(k)
3 = RNN(y

(k)
3 ,h

(k)
2)

y
(k)
1 y

(k)
2 y

(k)
3

s(w, ŷ
(k)
1:t−1) = log p(ŷ

(k)
1:t−1|x) + log softmax(Wout h

(k)
t−1 + bout)

= Wout h
(k)
t−1 + bout

BSO Idea #2: Don’t locally normalize

h
(k)
1 h

(k)
2 h

(k)
3 = RNN(y

(k)
3 ,h

(k)
2)

y
(k)
1 y

(k)
2 y

(k)
3

s(w, ŷ
(k)
1:t−1) = log p(ŷ

(k)
1:t−1|x) + log softmax(Wout h

(k)
t−1 + bout)

= Wout h
(k)
t−1 + bout

Can set s(w, ŷ
(k)
1:t−1) =−∞ if (w, ŷ

(k)
1:t−1) violates a hard constraint

Beam Search Optimization

a

the

red

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Beam Search Optimization

a red

the dog

red blue

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Beam Search Optimization

a red dog

the dog dog

red blue cat

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Beam Search Optimization

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

Color Gold: target sequence y

Color Gray: violating sequence ŷ(K)

Beam Search Optimization

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO (Daumé III and Marcu, 2005):

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Beam Search Optimization

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO (Daumé III and Marcu, 2005):

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Beam Search Optimization

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO (Daumé III and Marcu, 2005):

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Beam Search Optimization

a red dog smells home

the dog dog barks quickly

red blue cat barks straight

runs

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO (Daumé III and Marcu, 2005):

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Beam Search Optimization

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

L(θ) =
∑
t

∆(ŷ
(K)
1:t)

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

LaSO (Daumé III and Marcu, 2005):

If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1

Backpropagation over Structure

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home now

Experiments

Word Ordering, Dependency Parsing, Machine Translation

Uses LSTM encoders and decoders, attention, input feeding

All models trained with Adagrad (Duchi et al., 2011)

Pre-trained with NLL; K increased gradually

“BSO” uses unconstrained search; “ConBSO” uses constraints

Ke = 1 Ke = 5 Ke = 10

Word Ordering (BLEU)

seq2seq 25.2 29.8 31.0

BSO 28.0 33.2 34.3

ConBSO 28.6 34.3 34.5

Dependency Parsing (UAS/LAS)1

seq2seq 87.33/82.26 88.53/84.16 88.66/84.33

BSO 86.91/82.11 91.00/87.18 91.17/87.41

ConBSO 85.11/79.32 91.25/86.92 91.57/87.26

Machine Translation (BLEU)

seq2seq 22.53 24.03 23.87

BSO, SB-∆, Kt=6 23.83 26.36 25.48

XENT 17.74 20.10 20.28

DAD 20.12 22.25 22.40

MIXER 20.73 21.81 21.83

1Note Andor et al. (2016) have SOA, with 94.41/92.55.

This Talk

How can we interpret these learned hidden representations?

(Strobelt et al., 2016)

How should we train these style of models? (Wiseman and Rush,

2016)

How can we shrink these models for practical applications?

Sequence-Level Knowledge Distillation

(Kim and Rush, 2016)

Neural Machine Translation

Excellent results on many language pairs, but need large models

Original seq2seq paper (Sutskever et al., 2014a): 4-layers/1000 units

Deep Residual RNNs (Zhou et al., 2016) : 16-layers/512 units

Google’s NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

=⇒ Deployment is challenging!

Neural Machine Translation

Excellent results on many language pairs, but need large models

Original seq2seq paper (Sutskever et al., 2014a): 4-layers/1000 units

Deep Residual RNNs (Zhou et al., 2016) : 16-layers/512 units

Google’s NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

=⇒ Deployment is challenging!

Related Work: Compressing Deep Models

Pruning: Prune weights based on importance criterion (LeCun et al.,

1990; Han et al., 2016; See et al., 2016)

Knowledge Distillation: Train a student model to learn from a

teacher model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al.,

2015; Kuncoro et al., 2016). (Sometimes called “dark knowledge”)

Knowledge Distillation (Bucila et al., 2006; Hinton et al., 2015)

Train a larger teacher model first to obtain teacher distribution q(·)

Train a smaller student model p(·) to mimic the teacher

Word-Level Knowledge Distillation

Teacher distribution: q(wt | y1:t−1)

LNLL = −
∑
t

∑
k∈V

1{yt = k} log p(wt = k | y1:t−1; θ)

LWORD-KD = −
∑
t

∑
k∈V

q(wt = k | y1:t−1) log p(wt = k | y1:t−1; θ)

Knowledge Distillation (Bucila et al., 2006; Hinton et al., 2015)

Train a larger teacher model first to obtain teacher distribution q(·)

Train a smaller student model p(·) to mimic the teacher

Word-Level Knowledge Distillation

Teacher distribution: q(wt | y1:t−1)

LNLL = −
∑
t

∑
k∈V

1{yt = k} log p(wt = k | y1:t−1; θ)

LWORD-KD = −
∑
t

∑
k∈V

q(wt = k | y1:t−1) log p(wt = k | y1:t−1; θ)

No Knowledge Distillation

Word-Level Knowledge Distillation

Word-Level Knowledge Distillation

Word-Level Knowledge Distillation Results

English → German (WMT 2014)

Model BLEU

4× 1000 Teacher 19.5

2× 500 Baseline (No-KD) 17.6

2× 500 Student (Word-KD) 17.7

2× 300 Baseline (No-KD) 16.9

2× 300 Student (Word-KD) 17.6

This Work: Sequence-Level Knowledge Distillation

LNLL = −
∑
t

∑
k∈V

1{yt = k} log p(wt = k | y1:t−1)

LWORD-KD = −
∑
t

∑
k∈V

q(wt = k | y1:t−1) log p(wt = k | y1:t−1)

Instead minimize cross-entropy, between q and p implied

sequence-distributions

LSEQ-KD = −
∑

w1:T∈VT

q(w1:T |x) log p(w1:T |x)

Sum over an exponentially-sized set VT .

This Work: Sequence-Level Knowledge Distillation

LNLL = −
∑
t

∑
k∈V

1{yt = k} log p(wt = k | y1:t−1)

LWORD-KD = −
∑
t

∑
k∈V

q(wt = k | y1:t−1) log p(wt = k | y1:t−1)

Instead minimize cross-entropy, between q and p implied

sequence-distributions

LSEQ-KD = −
∑

w1:T∈VT

q(w1:T |x) log p(w1:T |x)

Sum over an exponentially-sized set VT .

Sequence-Level Knowledge Distillation

Approximate q(w |x) with mode

q(w1:T |x) ≈ 1{arg max
w1:T

q(w1:T |x)}

Approximate mode with beam search

ŷ ≈ arg max
w1:T

q(w1:T |x)

Simple model: train the student model on ŷ with NLL

Sequence-Level Knowledge Distillation

Approximate q(w |x) with mode

q(w1:T |x) ≈ 1{arg max
w1:T

q(w1:T |x)}

Approximate mode with beam search

ŷ ≈ arg max
w1:T

q(w1:T |x)

Simple model: train the student model on ŷ with NLL

Sequence-Level Knowledge Distillation

Approximate q(w |x) with mode

q(w1:T |x) ≈ 1{arg max
w1:T

q(w1:T |x)}

Approximate mode with beam search

ŷ ≈ arg max
w1:T

q(w1:T |x)

Simple model: train the student model on ŷ with NLL

Sequence-Level Knowledge Distillation

Sequence-Level Knowledge Distillation

Sequence-Level Interpolation

Word-level knowledge distillation

L = αLWORD-KD + (1− α)LNLL

Training the student towards the mixture of teacher/data distributions.

How can we incorporate ground truth data at the sequence-level?

Sequence-Level Interpolation

Sequence-Level Interpolation

Experiments on English → German (WMT 2014)

Word-KD: Word-level Knowledge Distillation

Seq-KD: Sequence-level Knowledge Distillation with beam size

K = 5

Seq-Inter: Sequence-level Interpolation with beam size K = 35.

Fine-tune from pretrained Seq-KD (or baseline) model with smaller

learning rate.

Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%

Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%

Seq-KD 18.9 +4.2 19.0 +1.4 22.7 16.9%

Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%

Seq-KD 18.9 +4.2 19.0 +1.4 22.7 16.9%

Seq-Inter 18.9 +4.2 19.3 +1.7 15.8 7.6%

Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

Seq-Inter 19.6 +1.9 19.8 +0.3 10.4 8.2%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%

Seq-KD 18.9 +4.2 19.0 +1.4 22.7 16.9%

Seq-Inter 18.9 +4.2 19.3 +1.7 15.8 7.6%

Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

Seq-Inter 19.6 +1.9 19.8 +0.3 10.4 8.2%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%

Seq-KD 18.9 +4.2 19.0 +1.4 22.7 16.9%

Seq-Inter 18.9 +4.2 19.3 +1.7 15.8 7.6%

Many more experiments (different language pairs, combining configurations,

different sizes etc.) in paper

An Application

[App]

https://harvardnlp.github.io/seq2seq-talk/transfast.gif

Decoding Speed

Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to

word embedding tables)

4× 1000: 221 million

2× 500: 84 million

2× 300: 49 million

Prune student model: Same methodology as See et al. (2016)

Prune x% of weights based on absolute value

Fine-tune pruned model (crucial!)

Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to

word embedding tables)

4× 1000: 221 million

2× 500: 84 million

2× 300: 49 million

Prune student model: Same methodology as See et al. (2016)

Prune x% of weights based on absolute value

Fine-tune pruned model (crucial!)

Combining Knowledge Distillation and Pruning

Conclusion: Other work

How can we interpret these learned hidden representations?

Lei et al. (2016) other methods for interpreting decisions (as

opposed to states).

How should we train these style of models?

Lee et al. (2016) CCG parsing (backprop through search is a thing

now/again)

How can we shrink these models for practical applications?

Live deployment: (greedy) student outperforms (beam search)

teacher. (Crego et al., 2016)

Can compress an ensemble into a single model (Kuncoro et al., 2016)

Coming Work

Structured Attention Networks (Kim et al 2016)

q

z1

x1 x2 x3 x4

(a)

q

z1 z2 z3 z4

x1 x2 x3 x4

(b)

q

z1 z2 z3 z4

x1 x2 x3 x4

(c)

Thanks!

References I

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K.,

Petrov, S., and Collins, M. (2016). Globally Normalized Transition-Based

Neural Networks. arXiv, cs.CL.

Ba, L. J. and Caruana, R. (2014). Do Deep Nets Really Need to be Deep? In

Proceedings of NIPS.

Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville,

A., and Bengio, Y. (2016). An Actor-Critic Algorithm for Sequence

Prediction.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. CoRR, abs/1409.0473.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling

for sequence prediction with recurrent neural networks. In Advances in

Neural Information Processing Systems, pages 1171–1179.

References II

Bucila, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model Compression.

In Proceedings of KDD.

Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2015). Listen, Attend and Spell.

arXiv:1508.01211.

Cheng, J. and Lapata, M. (2016). Neural summarization by extracting

sentences and words. arXiv preprint arXiv:1603.07252.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using

RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings

of EMNLP.

Chorowski, J., Bahdanau, D., and Serdyuk, D. (2015). Attention-based models

for speech recognition. Advances in Neural.

Crego, J., Kim, J., and Senellart, J. (2016). Systran’s pure neural machine

translation system. arXiv preprint arXiv:1602.06023.

References III

Daudaravicius, V., Banchs, R. E., Volodina, E., and Napoles, C. (2016). A

Report on the Automatic Evaluation of Scientific Writing Shared Task.

NAACL BEA11 Workshop, pages 53–62.

Daumé III, H. and Marcu, D. (2005). Learning as search optimization:

approximate large margin methods for structured prediction. In Proceedings

of the Twenty-Second International Conference on Machine Learning

{(ICML} 2005), pages 169–176.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization. The Journal of Machine

Learning Research, 12:2121–2159.

Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A. (2016). Multilingual

Language Processing from Bytes. In Proceedings of NAACL.

References IV

Han, S., Mao, H., and Dally, W. J. (2016). Deep Compression: Compressing

Deep Neural Networks with Pruning, Trained Quantization and Huffman

Coding. In Proceedings of ICLR.

Hermann, K., Kocisky, T., and Grefenstette, E. (2015). Teaching machines to

read and comprehend. Advances in Neural.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a

Neural Network. arXiv:1503.0253.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation

models. In EMNLP, pages 1700–1709.

Karpathy, A., Johnson, J., and Li, F.-F. (2015). Visualizing and understanding

recurrent networks. ICLR Workshops.

Karpathy, A. and Li, F.-F. (2015). Deep visual-semantic alignments for

generating image descriptions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3128–3137.

References V

Kim, Y. and Rush, A. M. (2016). Sequence-Level Knowledge Distillation.

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., and Smith, N. A. (2016).

Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser.

In Proceedings of EMNLP.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional

random fields: Probabilistic models for segmenting and labeling sequence

data. In Proceedings of the Eighteenth International Conference on Machine

Learning (ICML 2001), pages 282–289.

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In

Proceedings of NIPS.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to

Attention-based Neural Machine Translation. In EMNLP, number

September, page 11.

References VI

Mou, L., Yan, R., Li, G., Zhang, L., and Jin, Z. (2015). Backward and forward

language modeling for constrained sentence generation. arXiv preprint

arXiv:1512.06612.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence Level

Training with Recurrent Neural Networks. ICLR, pages 1–15.

Rush, A. M., Chopra, S., and Weston, J. (2015). A Neural Attention Model

for Abstractive Sentence Summarization. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP),

(September):379–389.

Schmaltz, A., Kim, Y., Rush, A. M., and Shieber, S. M. (2016).

Sentence-Level Grammatical Error Identification as Sequence-to-Sequence

Correction.

See, A., Luong, M.-T., and Manning, C. D. (2016). Compression of Neural

Machine Translation via Pruning. In Proceedings of CoNLL.

References VII

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016).

Building End-to-End Dialogue Systems Using Generative Hierarchical Neural

Network Models. In Proceedings of AAAI.

Srivastava, N., Mansimov, E., and Salakhutdinov, R. (2015). Unsupervised

Learning of Video Representations using LSTMs. Proceedings of ICML.

Strobelt, H., Gehrmann, S., Huber, B., Pfister, H., and Rush, A. M. (2016).

Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks.

Sutskever, I., Vinyals, O., and Le, Q. (2014a). Sequence to Sequence Learning

with Neural Networks.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014b). Sequence to sequence

learning with neural networks. In Advances in Neural Information Processing

Systems, pages 3104–3112.

Takase, S., Suzuki, J., Okazaki, N., Hirao, T., and Nagata, M. (2016). Neural

headline generation on abstract meaning representation.

References VIII

Toutanova, K., Tran, K. M., and Amershi, S. (2016). A dataset and evaluation

metrics for abstractive compression of sentences and short paragraphs.

Venkatraman, A., Boots, B., Hebert, M., and Bagnell, J. (2015). DATA AS

DEMONSTRATOR with Applications to System Identification.

pdfs.semanticscholar.org.

Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G.

(2014). Grammar as a Foreign Language. In arXiv, pages 1–10.

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint

arXiv:1506.05869.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and Tell: A

Neural Image Caption Generator. In Proceedings of CVPR.

Wang, S., Han, S., and Rush, A. M. (2016a). Headliner.

Computation+Journalism.

References IX

Wang, T., Chen, P., Amaral, K., and Qiang, J. (2016b). An experimental

study of lstm encoder-decoder model for text simplification. arXiv preprint

arXiv:1609.03663.

Wiseman, S. and Rush, A. M. (2016). Sequence-to-Sequence Learning as

Beam-Search Optimization.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,

Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A.,

Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa,

H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J.,

Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J.

(2016). Google’s Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation. arXiv:1606.09.08144.

References X

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R.,

and Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption

Generation with Visual Attention. ICML.

Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016). Deep Recurrent

Models with Fast-Forward Connections for Neural Machine Translation. In

Proceedings of TACL.

	Interpretation

