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Sequence-to-Sequence

Machine Translation (Kalchbrenner and Blunsom, 2013; Sutskever et al.,

2014b; Cho et al., 2014; Bahdanau et al., 2014; Luong et al., 2015)

Question Answering (Hermann et al., 2015)

Conversation (Vinyals and Le, 2015) (Serban et al., 2016)

Parsing (Vinyals et al., 2014)

Speech (Chorowski et al., 2015; Chan et al., 2015)

Caption Generation (Karpathy and Li, 2015; Xu et al., 2015; Vinyals et al.,

2015)

Video-Generation (Srivastava et al., 2015)

NER/POS-Tagging (Gillick et al., 2016)

Summarization (Rush et al., 2015)
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Seq2Seq Neural Network Toolbox

Embeddings sparse features ⇒ dense features

RNNs feature sequences ⇒ dense features

Softmax dense features ⇒ discrete predictions



Embeddings sparse features ⇒ dense features



[Words Vectors]

http://harvardnlp.github.io/seq2seq-talk/web/wordvecs.html


RNNs/LSTMs feature sequences ⇒ dense features



LM/Softmax dense features ⇒ discrete predictions

p(wt|w1, . . . , wt−1; θ) = softmax(Woutht−1 + bout)

p(w1:T ) =
∏
t

p(wt|w1, . . . , wt−1)



Contextual Language Model / “seq2seq”

Key idea, contextual language model based on encoder x:

p(w1:T |x) =
∏
t

p(wt|w1, . . . , wt−1, x)



Actual Seq2Seq / Encoder-Decoder / Attention-Based Models

Different encoders, attention mechanisms, input feeding, ...

Almost all models use LSTMs or other gated RNNs

Large multi-layer networks necessary for good performance.

4 layer, 1000 hidden dims is common for MT



Seq2Seq-Attn

HarvardNLP’s open-source system (Yoon Kim)

http://github.com/harvardnlp/seq2seq-attn

Used by SYSTRAN for 32 language pairs (Crego et al., 2016)

[Demo]

http://github.com/harvardnlp/seq2seq-attn
http://demo-pnmt.systran.net


Seq2Seq Applications: Neural Summarization (Rush et al., 2015)

Source (First Sentence)

Russian Defense Minister Ivanov called Sunday for the creation of a

joint front for combating global terrorism.

Target (Title)

Russia calls for joint front against terrorism.

(Mou et al., 2015) (Cheng and Lapata, 2016) (Toutanova et al., 2016) (Wang

et al., 2016b) (Takase et al., 2016), among others

Used by Washington Post to suggest headlines (Wang et al., 2016a)
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Seq2Seq Applications: Grammar Correction (Schmaltz et al., 2016)

Source (Original Sentence)

There is no a doubt, tracking systems has brought many benefits in this

information age .

Target (Corrected Sentence)

There is no doubt, tracking systems have brought many benefits in this

information age .

1st on BEA’11 grammar correction task (Daudaravicius et al., 2016)



Seq2Seq Applications: Im2Markup (Deng and Rush, 2016)

[Latex Example]

[Project]

https://harvardnlp.github.io/seq2seq-talk/web/math.html
http://lstm.seas.harvard.edu/latex


This Talk

How can we interpret these learned hidden representations?

How should we train these style of models?

How can we shrink these models for practical applications?



This Talk

How can we interpret these learned hidden representations?

LSTMVis lstm.seas.harvard.edu

(Strobelt et al., 2016)

How should we train these style of models? (Wiseman and Rush,

2016)

How can we shrink these models for practical applications? (Kim

and Rush, 2016)

https://lstm.seas.harvard.edu/


(?)



Vector-Space RNN Representation



(Karpathy et al., 2015)



Example 1: Synthetic (Finite-State) Language

Numbers are randomly generated, must match nesting level.

Train a predict-next-word language model (decoder-only).

p(wt|w1, . . . , wt−1)

[Parens Example]

http://lstm.seas.harvard.edu/client/pattern_finder.html?data_set=00parens&source=states::states2&pos=150


Example 2: Real Language

alphabet: all english words

corpus: Project Gutenberg Children’s books

Train a predict-next-word language model (decoder-only).

p(wt|w1, . . . , wt−1)

[LM Example]

http://lstm.seas.harvard.edu/client/pattern_finder.html?data_set=05childbook&source=states::states1&pos=100


Example 3: Seq2Seq Encoder

alphabet: all english words

corpus: Summarization

Train a full seq2seq model, examine encoder LSTM.

[Summarization Example]

http://lstm.seas.harvard.edu/client/pattern_finder.html?data_set=20autoencoder&source=states::states2&pos=100


This Talk

How can we interpret these learned hidden representations?

(Strobelt et al., 2016)

How should we train these style of models?

Sequence-to-Sequence Learning as Beam-Search Optimization

(Wiseman and Rush, 2016)

How can we shrink these models for practical applications (Kim and

Rush, 2016)?



Seq2Seq Notation

x; source input

V; vocabulary

wt; random variable for the t-th target token with support V

y1:T ; ground-truth output

ŷ1:T ; predicted output

p(w1:T |x; θ) =
∏

t p(wt|w1:t−1, x; θ); model distribution



Seq2Seq Details

Train Objective: Given source-target pairs (x, y1:T ), minimize NLL of

each word independently, conditioned on gold history y1:t−1

LNLL(θ) = −
∑
t

log p(wt = yt|y1:t−1, x; θ)

Test Objective: Structured prediction

ŷ1:T = arg max
w1:T

∑
t

log p(wt|w1:t−1, x; θ)

Typical to approximate the arg max with beam-search



Beam Search (K = 3)

a

the

red

For t= 1 . . . T :

For all k and for all possible output words w:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

Update beam:

ŷ
(1:K)
1:t ← K-arg max s(w, ŷ

(k)
1:t−1)
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(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)
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Beam Search (K = 3)
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Beam Search (K = 3)
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Problem

How should we train sequence models?

Related Work

Approaches to Exposure Bias, Label Bias:

Data as Demonstrator, Scheduled Sampling (Venkatraman et al.,

2015; Bengio et al., 2015)

Globally Normalized Transition-Based Networks (Andor et al., 2016)

RL-based approaches

MIXER (Ranzato et al., 2016)

Actor-Critic (Bahdanau et al., 2016)
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Issue #1: Train/Test Mismatch (cf., (Ranzato et al., 2016))

NLL(θ) = −
∑
t

log p(wt = yt|y1:t−1, x; θ)

(a) Training conditions on true history (“Exposure Bias”)

(b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Use a loss that incorporates sequence-level costs
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BSO Idea #1: Use a loss that incorporates sequence-level costs

L(θ) =
∑
t

∆(ŷ
(K)
1:t )

[
1− s(yt, y1:t−1) + s(ŷ

(K)
t , ŷ

(K)
1:t−1)

]

y1:t is the gold prefix; ŷ
(K)
1:t is the K’th prefix on the beam

∆(ŷ
(K)
1:t ) allows us to scale loss by badness of predicting ŷ

(K)
1:t
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Issue #2: Seq2Seq models next-word probabilities:

s(w, ŷ
(k)
1:t−1)← log p(ŷ

(k)
1:t−1|x) + log p(w|ŷ(k)1:t−1, x)

(a) Sequence score is sum of locally normalized word-scores; gives rise

to “Label Bias” (Lafferty et al., 2001)

(b) What if we want to train with sequence-level constraints?

Idea #2: Don’t locally normalize
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(k)
1:t−1) violates a hard constraint



Beam Search Optimization

a

the

red

L(θ) =
∑
t

∆(ŷ
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Beam Search Optimization

a red dog smells

the dog dog barks

red blue cat barks

runs

L(θ) =
∑
t

∆(ŷ
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If no margin violation at t− 1, update beam as usual

Otherwise, update beam with sequences prefixed by y1:t−1
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Beam Search Optimization
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Beam Search Optimization

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today
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[
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LaSO (Daumé III and Marcu, 2005):
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Backpropagation over Structure

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home now



Experiments

Word Ordering, Dependency Parsing, Machine Translation

Uses LSTM encoders and decoders, attention, input feeding

All models trained with Adagrad (Duchi et al., 2011)

Pre-trained with NLL; K increased gradually

“BSO” uses unconstrained search; “ConBSO” uses constraints



Ke = 1 Ke = 5 Ke = 10

Word Ordering (BLEU)

seq2seq 25.2 29.8 31.0

BSO 28.0 33.2 34.3

ConBSO 28.6 34.3 34.5

Dependency Parsing (UAS/LAS)1

seq2seq 87.33/82.26 88.53/84.16 88.66/84.33

BSO 86.91/82.11 91.00/87.18 91.17/87.41

ConBSO 85.11/79.32 91.25/86.92 91.57/87.26

Machine Translation (BLEU)

seq2seq 22.53 24.03 23.87

BSO, SB-∆, Kt=6 23.83 26.36 25.48

XENT 17.74 20.10 20.28

DAD 20.12 22.25 22.40

MIXER 20.73 21.81 21.83

1Note Andor et al. (2016) have SOA, with 94.41/92.55.



This Talk

How can we interpret these learned hidden representations?

(Strobelt et al., 2016)

How should we train these style of models? (Wiseman and Rush,

2016)

How can we shrink these models for practical applications?

Sequence-Level Knowledge Distillation

(Kim and Rush, 2016)





Neural Machine Translation

Excellent results on many language pairs, but need large models

Original seq2seq paper (Sutskever et al., 2014a): 4-layers/1000 units

Deep Residual RNNs (Zhou et al., 2016) : 16-layers/512 units

Google’s NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

=⇒ Deployment is challenging!
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Related Work: Compressing Deep Models

Pruning: Prune weights based on importance criterion (LeCun et al.,

1990; Han et al., 2016; See et al., 2016)

Knowledge Distillation: Train a student model to learn from a

teacher model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al.,

2015; Kuncoro et al., 2016). (Sometimes called “dark knowledge”)



Knowledge Distillation (Bucila et al., 2006; Hinton et al., 2015)

Train a larger teacher model first to obtain teacher distribution q(·)

Train a smaller student model p(·) to mimic the teacher

Word-Level Knowledge Distillation

Teacher distribution: q(wt | y1:t−1)

LNLL = −
∑
t

∑
k∈V

1{yt = k} log p(wt = k | y1:t−1; θ)

LWORD-KD = −
∑
t

∑
k∈V

q(wt = k | y1:t−1) log p(wt = k | y1:t−1; θ)
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No Knowledge Distillation
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Word-Level Knowledge Distillation Results

English → German (WMT 2014)

Model BLEU

4× 1000 Teacher 19.5

2× 500 Baseline (No-KD) 17.6

2× 500 Student (Word-KD) 17.7

2× 300 Baseline (No-KD) 16.9

2× 300 Student (Word-KD) 17.6
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t
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1{yt = k} log p(wt = k | y1:t−1)

LWORD-KD = −
∑
t

∑
k∈V

q(wt = k | y1:t−1) log p(wt = k | y1:t−1)

Instead minimize cross-entropy, between q and p implied

sequence-distributions

LSEQ-KD = −
∑

w1:T∈VT

q(w1:T |x) log p(w1:T |x)

Sum over an exponentially-sized set VT .
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Sequence-Level Knowledge Distillation

Approximate q(w |x) with mode

q(w1:T |x) ≈ 1{arg max
w1:T

q(w1:T |x)}

Approximate mode with beam search

ŷ ≈ arg max
w1:T

q(w1:T |x)

Simple model: train the student model on ŷ with NLL



Sequence-Level Knowledge Distillation

Approximate q(w |x) with mode

q(w1:T |x) ≈ 1{arg max
w1:T

q(w1:T |x)}

Approximate mode with beam search
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Sequence-Level Knowledge Distillation



Sequence-Level Knowledge Distillation



Sequence-Level Interpolation

Word-level knowledge distillation

L = αLWORD-KD + (1− α)LNLL

Training the student towards the mixture of teacher/data distributions.

How can we incorporate ground truth data at the sequence-level?
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Experiments on English → German (WMT 2014)

Word-KD: Word-level Knowledge Distillation

Seq-KD: Sequence-level Knowledge Distillation with beam size

K = 5

Seq-Inter: Sequence-level Interpolation with beam size K = 35.

Fine-tune from pretrained Seq-KD (or baseline) model with smaller

learning rate.



Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%
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Results: English → German (WMT 2014)

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(ŷ)

4× 1000

Teacher 17.7 − 19.5 − 6.7 1.3%

Seq-Inter 19.6 +1.9 19.8 +0.3 10.4 8.2%

2× 500

Student 14.7 − 17.6 − 8.2 0.9%

Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%

Seq-KD 18.9 +4.2 19.0 +1.4 22.7 16.9%

Seq-Inter 18.9 +4.2 19.3 +1.7 15.8 7.6%

Many more experiments (different language pairs, combining configurations,

different sizes etc.) in paper



An Application

[App]

https://harvardnlp.github.io/seq2seq-talk/transfast.gif


Decoding Speed

  



Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to

word embedding tables)

4× 1000: 221 million

2× 500: 84 million

2× 300: 49 million

Prune student model: Same methodology as See et al. (2016)

Prune x% of weights based on absolute value

Fine-tune pruned model (crucial!)



Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to

word embedding tables)

4× 1000: 221 million

2× 500: 84 million

2× 300: 49 million

Prune student model: Same methodology as See et al. (2016)

Prune x% of weights based on absolute value

Fine-tune pruned model (crucial!)



Combining Knowledge Distillation and Pruning



Conclusion: Other work

How can we interpret these learned hidden representations?

Lei et al. (2016) other methods for interpreting decisions (as

opposed to states).

How should we train these style of models?

Lee et al. (2016) CCG parsing (backprop through search is a thing

now/again)

How can we shrink these models for practical applications?

Live deployment: (greedy) student outperforms (beam search)

teacher. (Crego et al., 2016)

Can compress an ensemble into a single model (Kuncoro et al., 2016)



Coming Work

Structured Attention Networks (Kim et al 2016)

q

z1

x1 x2 x3 x4

(a)

q

z1 z2 z3 z4

x1 x2 x3 x4

(b)

q

z1 z2 z3 z4

x1 x2 x3 x4

(c)



Thanks!
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