Word Ordering Without Syntax

Allen Schmaltz Alexander M. Rush Stuart M. Shieber

Harvard University

EMNLP, 2016
Outline

1. Task: Word Ordering, or Linearization
2. Models
3. Experiments
4. Results
Task: Word Ordering, or Linearization

Word Ordering

- Task: Recover the original order of a shuffled sentence

Given a bag of words

\{ the, ., Investors, move, welcomed \}

Goal is to recover the original sentence

Investors welcomed the move.
Task: Word Ordering, or Linearization

Word Ordering

- Task: Recover the original order of a shuffled sentence

Variant: Shuffle, retaining base noun phrases (BNPs)

\{ the move, ., Investors, welcomed \}

\[\downarrow\]

Goal is to recover the original sentence

Investors welcomed the move .
Word Ordering

Early work

The order of words in sentences reflects a number of constraints. . . Syntactic structure, selective restrictions, subcategorization, and discourse considerations are among the many factors which join together to fix the order in which words occur. . . [T]here is an abstract structure which underlies the surface strings and it is this structure which provides a more insightful basis for understanding the constraints on word order. . . . It is, therefore, an interesting question to ask whether a network can learn any aspects of that underlying abstract structure.

The word ordering task also appears in Brown et al. (1990) and Brew (1992).
Word Ordering, Recent Work (Zhang and Clark, 2011; Liu et al., 2015; Liu and Zhang, 2015; Zhang and Clark, 2015)

- Liu et al. (2015) (known as ZGEN)
 - State of art on PTB
 - Uses a transition-based parser with beam search to construct a sentence and a parse tree

 - Claims syntactic models yield improvements over pure surface n-gram models
 - Particularly on longer sentences
 - Even when syntactic trees used in training are of low quality
Revisiting comparison between syntactic & surface-level models

Simple takeaway:

- **Prior work:** Jointly recovering explicit syntactic structure is important, or even required, for effectively recovering word order
- **We find:** Surface-level language models with a simple heuristic give much stronger results on this task
Models - Inference

- Scoring function:

\[f(x, y) = \sum_{n=1}^{N} \log p(x_y(n) \mid x_y(1), \ldots, x_y(n-1)) \]

\[y^* = \arg \max_{y \in \mathcal{Y}} f(x, y) \]

- Beam search: Maintain multiple beams, as in stack decoding for phrase-based MT

- Include an estimate of future cost in order to improve search accuracy: Unigram cost of uncovered tokens in the bag
Beam Search ($K = 3$): Unigram Future Cost Example

Shuffled bag
{ the, ., Investors, move, welcomed }

- Timestep 1:
 - $\text{score(Investors)} = \log p(\text{Investors} \mid \text{START}) + \log p(\text{the}) + \log p(.) + \log p(\text{move}) + \log p(\text{welcomed})$
Beam Search \((K = 3)\): Unigram Future Cost Example

Shuffled bag

\{ the, ., Investors, move, welcomed \}

- Timestep 2
Beam Search \((K = 3)\): Unigram Future Cost Example

Shuffled bag

\{ the, ., Investors, move, welcomed \}

- **Timestep 3:**
 - \(\text{score}(\text{Investors welcomed the}) = \log p(\text{Investors} \mid \text{START}) + \log p(\text{welcomed} \mid \text{START, Investors}) + \log p(\text{the} \mid \text{START, Investors, welcomed}) + \log p(.) + \log p(\text{move})\)
Experiments

Data, matches past work:
- PTB, standard splits, Liu et al. (2015)
- PTB + Gigaword sample (gw), Liu and Zhang (2015)
- Words and Words+BNPs tasks

Baseline: Syntactic ZGen model (Liu et al., 2015)
- With/without POS tags

Our LM models: NGRAM and LSTM
- With/without unigram future costs
- Varying beam size (64, 512)
Test Set Performance (BLEU), **Words** task

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZGen-64</td>
<td>30.9</td>
</tr>
<tr>
<td>NGram-64 (no future cost)</td>
<td>32.0</td>
</tr>
<tr>
<td>NGram-64</td>
<td>37.0</td>
</tr>
<tr>
<td>NGram-512</td>
<td>38.6</td>
</tr>
<tr>
<td>LSTM-64</td>
<td>40.5</td>
</tr>
<tr>
<td>LSTM-512</td>
<td>42.7</td>
</tr>
</tbody>
</table>
Test Set Performance (BLEU), *Words+BNPs* task

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZGen-64</td>
<td>49.4</td>
</tr>
<tr>
<td>ZGen-64+pos</td>
<td>50.8</td>
</tr>
<tr>
<td>NGram-64 (no future cost)</td>
<td>51.3</td>
</tr>
<tr>
<td>NGram-64</td>
<td>54.3</td>
</tr>
<tr>
<td>NGram-512</td>
<td>55.6</td>
</tr>
<tr>
<td>LSTM-64</td>
<td>60.9</td>
</tr>
<tr>
<td>LSTM-512</td>
<td>63.2</td>
</tr>
<tr>
<td>ZGen-64+lm+gw+pos</td>
<td>52.4</td>
</tr>
<tr>
<td>LSTM-64+gw</td>
<td>63.1</td>
</tr>
<tr>
<td>LSTM-512+gw</td>
<td>65.8</td>
</tr>
</tbody>
</table>
Performance by sentence length

Figure: Performance on PTB validation by length (\textsc{Words+BNPs} models)
Additional Comparisons

<table>
<thead>
<tr>
<th></th>
<th>BNP</th>
<th>g</th>
<th>GW</th>
<th>1</th>
<th>10</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>41.7</td>
<td>53.6</td>
<td>58.0</td>
<td>59.1</td>
<td>60.0</td>
<td>60.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>47.6</td>
<td>59.4</td>
<td>62.2</td>
<td>62.9</td>
<td>63.6</td>
<td>64.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>48.4</td>
<td>60.1</td>
<td>64.2</td>
<td>64.9</td>
<td>65.6</td>
<td>66.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>15.4</td>
<td>26.8</td>
<td>33.8</td>
<td>35.3</td>
<td>36.5</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>25.0</td>
<td>36.8</td>
<td>40.7</td>
<td>41.7</td>
<td>42.0</td>
<td>42.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>23.8</td>
<td>35.5</td>
<td>40.7</td>
<td>41.7</td>
<td>42.9</td>
<td>43.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>40.6</td>
<td>49.7</td>
<td>52.6</td>
<td>53.2</td>
<td>54.0</td>
<td>54.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>45.7</td>
<td>53.6</td>
<td>55.6</td>
<td>56.2</td>
<td>56.6</td>
<td>56.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>14.6</td>
<td>27.1</td>
<td>32.6</td>
<td>33.8</td>
<td>35.1</td>
<td>35.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>27.1</td>
<td>34.6</td>
<td>37.5</td>
<td>38.1</td>
<td>38.4</td>
<td>38.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- **Strong surface-level language models** recover word order more accurately than the models trained with explicit syntactic annotations.
- **LSTM LMs** with a simple **future cost heuristic** are particularly effective.
Conclusion

- **Strong surface-level language models** recover word order more accurately than the models trained with explicit syntactic annotations.
- **LSTM LMs** with a simple **future cost heuristic** are particularly effective.

Implications
- Begin to question the utility of costly syntactic annotations in generation models (e.g., grammar correction).
- Part of larger discussion as to whether LSTMs, themselves, are capturing syntactic phenomena.
Replication code is available at
https://github.com/allenschmaltz/word_ordering