
Word Ordering Without Syntax

Allen Schmaltz Alexander M. Rush Stuart M. Shieber

Harvard University

EMNLP, 2016

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 1 / 15

Outline

1 Task: Word Ordering, or Linearization

2 Models

3 Experiments

4 Results

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 2 / 15

Task: Word Ordering, or Linearization

Word Ordering

Task: Recover the original order of a shuffled sentence

Given a bag of words

{ the, ., Investors, move, welcomed }

⇓
Goal is to recover the original sentence

Investors welcomed the move .

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 3 / 15

Task: Word Ordering, or Linearization

Word Ordering

Task: Recover the original order of a shuffled sentence

Variant: Shuffle, retaining base noun phrases (BNPs)

{ the move, ., Investors, welcomed }

⇓
Goal is to recover the original sentence

Investors welcomed the move .

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 3 / 15

Task: Word Ordering, or Linearization Early work

Word Ordering
Early work

Jeffrey Elman (“Finding Structure in Time.“ Cognitive Science, 1990):

The order of words in sentences reflects a number of
constraints. . . Syntactic structure, selective restrictions, subcategorization,
and discourse considerations are among the many factors which join
together to fix the order in which words occur. . . [T]here is an abstract
structure which underlies the surface strings and it is this structure which
provides a more insightful basis for understanding the constraints on word
order. . . . It is, therefore, an interesting question to ask whether a network
can learn any aspects of that underlying abstract structure.

The word ordering task also appears in Brown et al. (1990) and Brew (1992).

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 4 / 15

Task: Word Ordering, or Linearization Recent Formulation/Work

Word Ordering, Recent Work (Zhang and Clark, 2011; Liu et al., 2015;

Liu and Zhang, 2015; Zhang and Clark, 2015)

Liu et al. (2015) (known as ZGen)

State of art on PTB
Uses a transition-based parser with beam search to construct a
sentence and a parse tree

....NP ..VBD ..NP ..IN ..NP ...
..Dr. Talcott1 ..led2 ..a team3 ..of4 ..Harvard University5 ...6

.....

Figure 2: Example dependency tree.

lem, which has a theoretical upper bound on the
time complexity, and always yields a full sentence in
quadratic time. Our method is inspired by the con-
nection between syntactic linearization and syntactic
parsing: both build a syntactic tree over a sentence,
with the former performing word ordering in addi-
tion to derivation construction. As a result, syntac-
tic linearization can be treated as a generalized form
of parsing, for which there is no input word order,
and therefore extensions to parsing algorithms can
be used to perform linearization.

For syntactic parsing, the algorithm of Zhang and
Nivre (2011) gives competitive accuracies under lin-
ear complexity. Compared with parsers that use dy-
namic programming (McDonald and Pereira, 2006;
Koo and Collins, 2010), the efficient beam-search
system is more suitable for the NP-hard lineariza-
tion task. We extend the parser of Zhang and Nivre
(2011), so that word ordering is performed in addi-
tion to syntactic tree construction. Experimental re-
sults show that the transition-based linearization sys-
tem runs an order of magnitude faster than a state-of-
the-art best-first baseline, with improved accuracies
in standard evaluation. Our linearizer is publicly
available under GPL at http://sourceforge.
net/projects/zgen/.

2 Transition-Based Parsing

The task of dependency parsing is to find a depen-
dency tree given an input sentence. Figure 2 shows
an example dependency tree, which consists of de-
pendency arcs that represent syntactic relations be-
tween pairs of words. A transition-based depen-
dency parsing algorithm (Nivre, 2008) can be for-
malized as a transition system, S = (C, T, cs, Ct),
where C is the set of states, T is a set of transition
actions, cs is the initial state and Ct is a set of ter-
minal states. The parsing process is modeled as an
application of a sequence of actions, transducing the
initial state into a final state, while constructing de-

Transition � � A
0 [] [1...6] �
1 SHIFT [1] [2...6]
2 SHIFT [1 2] [3...6]
3 SHIFT [1 2 3] [4...6]
4 SHIFT [1 2 3 4] [5,6]
5 SHIFT [1 2 3 4 5] [6]
6 RIGHTARC [1 2 3 4] [6] A � {4 � 5}
7 RIGHTARC [1 2 3] [6] A � {3 � 4}
8 RIGHTARC [1 2] [6] A � {2 � 3}
9 SHIFT [1 2 6] []
10 RIGHTARC [1 2] [] A � {2 � 6}
11 LEFTARC [2] [] A � {1 � 2}

Table 1: arc-standard transition action sequence for
parsing the sentence in Figure 2.

pendency arcs. Each state in the transition system
can be formalized as a tuple (�,�, A), where � is a
stack that maintains a partial derivation, � is a buffer
of incoming input words and A is the set of depen-
dency relations that have been built.

Our work is based on the arc-standard algorithm
(Nivre, 2008). The deduction system of the arc-
standard algorithm is shown in Figure 1. In this
system, three transition actions are used: LEFT-
ARC, RIGHTARC and SHIFT. Given a state s =
([�| j i], [k|�], A),

• LEFTARC builds an arc {j � i} and pops j off
the stack.

• RIGHTARC builds an arc {j � i} and pops i
off the stack.

• SHIFT removes the front word k from the buffer
�, and shifts it onto the stack.

In the notations above, i, j and k are word indices of
an input sentence. The arc-standard system assumes
that each input word has been assigned a part-of-
speech (POS) tag.

The sentence in Figure 2 can be parsed by the
transition sequence shown in Table 1. Given an input
sentence of n words, the algorithm takes 2n tran-
sitions to construct an output, because each word
needs to be shifted onto the stack once and popped
off once before parsing finishes, and all the transi-
tion actions are either shifting or popping actions.

114

Liu and Zhang (2015)
Claims syntactic models yield improvements over pure surface n-gram
models

Particularly on longer sentences
Even when syntactic trees used in training are of low quality

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 5 / 15

Task: Word Ordering, or Linearization Overview

Revisiting comparison between syntactic & surface-level
models

Simple takeaway:

Prior work: Jointly recovering explicit syntactic structure is
important, or even required, for effectively recovering word order

We find: Surface-level language models with a simple heuristic give
much stronger results on this task

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 6 / 15

Models Inference

Models - Inference

Scoring function:

f (x , y) =
N∑

n=1

log p(xy(n) | xy(1), . . . , xy(n−1))

y∗ = arg max
y∈Y

f (x , y)

Beam search: Maintain multiple beams, as in stack decoding for
phrase-based MT

Include an estimate of future cost in order to improve search
accuracy: Unigram cost of uncovered tokens in the bag

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 7 / 15

Models Inference

Beam Search (K = 3): Unigram Future Cost Example

Shuffled bag

{ the, ., Investors, move, welcomed }

Investors

move

the

Timestep 1:

score(Investors) = log p(Investors | START) + log p(the) + log p(.)
+ log p(move) + log p(welcomed)

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 8 / 15

Models Inference

Beam Search (K = 3): Unigram Future Cost Example

Shuffled bag

{ the, ., Investors, move, welcomed }

Investors move

move the

the welcomed

Timestep 2 score(Investors welcomed the) = log p(Investors |
START) + log p(welcomed | Investors, START) + log p(the |
welcomed, Investors, START) + log p(.) + log p(move)

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 8 / 15

Models Inference

Beam Search (K = 3): Unigram Future Cost Example

Shuffled bag

{ the, ., Investors, move, welcomed }

Investors move the

move the welcomed

the welcomed .

Timestep 3:

score(Investors welcomed the) = log p(Investors | START) +
log p(welcomed | START, Investors) + log p(the | START, Investors,
welcomed) + log p(.) + log p(move)

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 8 / 15

Experiments

Experiments

Data, matches past work:

PTB, standard splits, Liu et al. (2015)
PTB + Gigaword sample (gw), Liu and Zhang (2015)
Words and Words+BNPs tasks

Baseline: Syntactic ZGen model (Liu et al., 2015)

With/without POS tags

Our LM models: NGram and LSTM

With/without unigram future costs
Varying beam size (64, 512)

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 9 / 15

Results BLEU Performance

Test Set Performance (BLEU), Words task

Model BLEU

ZGen-64 30.9

NGram-64 (no future cost) 32.0
NGram-64 37.0
NGram-512 38.6
LSTM-64 40.5
LSTM-512 42.7

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 10 / 15

Results BLEU Performance

Test Set Performance (BLEU), Words+BNPs task

Model BLEU

ZGen-64 49.4
ZGen-64+pos 50.8

NGram-64 (no future cost) 51.3
NGram-64 54.3
NGram-512 55.6
LSTM-64 60.9
LSTM-512 63.2

ZGen-64+lm+gw+pos 52.4
LSTM-64+gw 63.1
LSTM-512+gw 65.8

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 11 / 15

Results Sentence Length

Performance by sentence length

5 10 15 20 25 30 35 40
Sentence length

30

50

70

90

B
L
E
U

(%
)

LSTM-512

LSTM-64

ZGen-64

LSTM-1

Figure: Performance on PTB validation by length (Words+BNPs models)

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 12 / 15

Results Additional Comparisons

Additional Comparisons

bnp g gw 1 10 64 128 256 512

LSTM
• 41.7 53.6 58.0 59.1 60.0 60.6
• • 47.6 59.4 62.2 62.9 63.6 64.3
• • • 48.4 60.1 64.2 64.9 65.6 66.2

15.4 26.8 33.8 35.3 36.5 38.0
• 25.0 36.8 40.7 41.7 42.0 42.5
• • 23.8 35.5 40.7 41.7 42.9 43.7

NGram
• 40.6 49.7 52.6 53.2 54.0 54.7
• • 45.7 53.6 55.6 56.2 56.6 56.6

14.6 27.1 32.6 33.8 35.1 35.8
• 27.1 34.6 37.5 38.1 38.4 38.7

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 13 / 15

Conclusion

Conclusion

Strong surface-level language models recover word order more
accurately than the models trained with explicit syntactic annotations

LSTM LMs with a simple future cost heuristic are particularly effective

Implications

Begin to question the utility of costly syntactic annotations in
generation models (e.g., grammar correction)
Part of larger discussion as to whether LSTMs, themselves, are
capturing syntactic phenomena

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 14 / 15

Conclusion

Conclusion

Strong surface-level language models recover word order more
accurately than the models trained with explicit syntactic annotations

LSTM LMs with a simple future cost heuristic are particularly effective

Implications

Begin to question the utility of costly syntactic annotations in
generation models (e.g., grammar correction)
Part of larger discussion as to whether LSTMs, themselves, are
capturing syntactic phenomena

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 14 / 15

Code

Replication code is available at
https://github.com/allenschmaltz/word_ordering

Schmaltz et al. (Harvard University) Word Ordering Without Syntax EMNLP, 2016 15 / 15

https://github.com/allenschmaltz/word_ordering

	Task: Word Ordering, or Linearization
	Models
	Experiments
	Results

