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Encoder-Decoder with Attention

Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)

Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)

Natural Language Inference (Rocktäschel et al., 2016; Parikh et al., 2016)

Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)

Parsing (Vinyals et al., 2015b)

Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)

Summarization (Rush et al., 2015)

Caption Generation (Xu et al., 2015)

and more...



Neural Attention

Input (sentence, image, etc.)

Memory-Bank Encoder (MLP, RNN, CNN)

Encoder(input) = x1, x2, . . . , xT

Attention Distribution Context Vector

“where” “what”

Decoder
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Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Attention-based Neural Machine Translation (Bahdanau et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Question Answering (Sukhbaatar et al., 2015)



Other Applications: Image Captioning (Xu et al., 2015)



Other Applications: Speech Recognition (Chan et al., 2015)



Applications From HarvardNLP: Summarization (Rush et al., 2015)



Applications From HarvardNLP: Image-to-Latex (Deng et al., 2016)



Applications From HarvardNLP: OpenNMT
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Attention Networks: Notation

x1, . . . , xT Memory bank

q Query

z Memory selection (random variable)

p(z |x, q; θ) Attention distribution (“where”)

f(x, z) Annotation function (“what”)

c = Ez |x,q[f(x, z)] Context Vector

End-to-End Requirements:

1 Need to compute attention p(z = i |x, q; θ)
2 Need to backpropagate to learn parameters θ
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Attention Networks: Machine Translation

x1, . . . , xT Memory bank Source RNN hidden states

q Query Decoder hidden state

z Memory selection Source position {1, . . . , T}
p(z = i |x, q; θ) Attention distribution softmax(x>i q)

f(x, z) Annotation function Memory at time z, i.e. xz

c = E[f(x, z)] Context Vector

End-to-End Requirements:

1 Need to compute attention p(z = i |x, q; θ)
=⇒ softmax function

2 Need to backpropagate to learn parameters θ

=⇒ Backprop through softmax function
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Structured Attention Networks

Replace simple attention with distribution over a combinatorial set

of structures

Attention distribution represented with graphical model over

multiple latent variables

Compute attention using embedded inference .

New Model

p(z |x, q; θ) Attention distribution over structures z



Structured Attention Networks for Neural Machine Translation
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Motivation: Structured Output Prediction

Modeling the structured output (i.e. graphical model on top of a

neural net) has improved performance (LeCun et al., 1998; Lafferty et al.,

2001; Collobert et al., 2011)

Given a sequence x = x1, . . . , xT

Factored potentials θi,i+1(zi, zi+1;x)

p(z |x; θ) = softmax
( T−1∑
i=1

θi,i+1(zi, zi+1;x)
)

=
1

Z
exp

( T−1∑
i=1

θi,i+1(zi, zi+1;x)
)



Neural CRF for Sequence Tagging (Collobert et al., 2011)

Factored potentials θ come from neural network.



Inference in Linear-Chain CRF

Fast algorithms for computing p(zi|x)
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Structured Attention Networks: Notation

x1, . . . , xT Memory bank -

q Query -

z1, . . . , zT Memory selection Selection over structures

p(zi |x, q; θ) Attention distribution Marginal distributions

f(x, z) Annotation function Neural representation



Challenge: End-to-End Training

Requirements:

1 Compute attention distribution (marginals) p(zi |x, q; θ)
=⇒ Forward-backward algorithm

2 Gradients wrt attention distribution parameters θ.

=⇒ Backpropagation through forward-backward algorithm
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Review: Forward-Backward Algorithm in Practice

θ: input potentials (e.g. from NN)

α, β: dynamic programming tables

procedure StructAttention(θ)

Forward

for i = 1, . . . , n; zi do

α[i, zi]←
∑

zi−1
α[i− 1, zi−1]× exp(θi−1,i(zi−1, zi))

Backward

for i = n, . . . , 1; zi do

β[i, zi]←
∑

zi+1ı β[i+ 1, zi+1]× exp(θi,i+1(zi, zi+1))



Forward-Backward Algorithm (Log-Space Semiring Trick)

θ: input potentials (e.g. from MLP or parameters)

x⊕ y = log(exp(x) + exp(y))

x⊗ y = x+ y

procedure StructAttention(θ)

Forward

for i = 1, . . . , n; zi do

α[i, zi]←
⊕

zi−1 α[i− 1, y]⊗ θi−1,i(zi−1, zi)

Backward

for i = n, . . . , 1; zi do

β[i, zi]←
⊕

zi+1 β[i+ 1, zi+1]⊗ θi,i+1(zi, zi+1)



Structured Attention Networks for Neural Machine Translation



Backpropagating through Forward-Backward

∇Lp : Gradient of arbitrary loss L with respect to marginals p

procedure BackpropStructAtten(θ, p,∇Lα,∇Lβ )

Backprop Backward

for i = n, . . . 1; zi do

β̂[i, zi]← ∇Lα[i, zi]⊕
⊕

zi+1
θi,i+1(zi, zi+1)⊗ β̂[i+ 1, zi+1]

Backprop Forward

for i = 1, . . . , n; zi do

α̂[i, zi]← ∇Lβ [i, zi]⊕
⊕

zi−1
θi−1,i(zi−1, zi)⊗ α̂[i− 1, zi−1]

Potential Gradients

for i = 1, . . . , n; zi, zi+1 do

∇Lθi−1,i(zi,zi+1) ← signexp(α̂[i, zi]⊗ β[i+ 1, zi+1]⊕ α[i, zi]⊗
β̂[i+ 1, zi+1]⊕ α[i, zi]⊗ β[i+ 1, zi+1]⊗−A)



Interesting Issue: Negative Gradients Through Attention

∇Lp : Gradient could be negative, but working in log-space!

Signed Log-space semifield Trick (Li and Eisner, 2009)

Use tuples (la, sa) where la = log |a| and sa = sign(a)

⊕
sa sb la+b sa+b

+ + la + log(1 + d) +

+ − la + log(1− d) +

− + la + log(1− d) −
− − la + log(1 + d) −

(Similar rules for ⊗)



Structured Attention Networks for Neural Machine Translation



1 Deep Neural Networks for Text Processing and Generation

2 Attention Networks

3 Structured Attention Networks

Computational Challenges

Structured Attention In Practice

4 Conclusion and Future Work



Implementation

(http://github.com/harvardnlp/struct-attn))

General-purpose structured attention unit.

All dynamic programming is GPU optimized for speed.

Additionally supports pairwise potentials and marginals.

NLP Experiments

Machine Translation

Question Answering

Natural Language Inference

(http://github.com/harvardnlp/struct-attn


Segmental-Attention for Neural Machine Translation

Use segmentation CRF for attention, i.e. binary vectors of length n

p(z1, . . . , zT |x, q) parameterized with a linear-chain CRF.

Neural “phrase-based” translation.

Unary potentials (Encoder RNN):

θi(k) =

xiWq, k = 1

0, k = 0

Pairwise potentials (Simple Parameters):

4 additional binary parameters (i.e., b0,0, b0,1, b1,0, b1,1)



Neural Machine Translation Experiments

Data:

Japanese → English (from WAT 2015)

Traditionally, word segmentation as a preprocessing step

Use structured attention learn an implicit segmentation model

Experiments:

Japanese characters → English words

Japanese words → English words



Neural Machine Translation Experiments

Simple Sigmoid Structured

Char → Word 12.6 13.1 14.6

Word → Word 14.1 13.8 14.3

BLEU scores on test set (higher is better).

Models:

Simple softmax attention

Sigmoid attention

Structured attention



Attention Visualization: Ground Truth



Attention Visualization: Simple Attention



Attention Visualization: Sigmoid Attention



Attention Visualization: Structured Attention



Simple Non-Factoid Question Answering

Simple attention: Greedy soft-selection of K supporting facts



Structured Attention Networks for Question Answering

Structured attention: Consider all possible sequences



Structured Attention Networks for Question Answering

baBi tasks (Weston et al., 2015): 1k questions per task

Simple Structured

Task K Ans % Fact % Ans % Fact %

Task 02 2 87.3 46.8 84.7 81.8

Task 03 3 52.6 1.4 40.5 0.1

Task 11 2 97.8 38.2 97.7 80.8

Task 13 2 95.6 14.8 97.0 36.4

Task 14 2 99.9 77.6 99.7 98.2

Task 15 2 100.0 59.3 100.0 89.5

Task 16 3 97.1 91.0 97.9 85.6

Task 17 2 61.1 23.9 60.6 49.6

Task 18 2 86.4 3.3 92.2 3.9

Task 19 2 21.3 10.2 24.4 11.5

Average − 81.4 39.6 81.0 53.7



Visualization of Structured Attention



Natural Language Inference

Given a premise (P) and a hypothesis (H), predict the relationship:

Entailment (E), Contradiction (C), Neutral (N)

$ A boy is running outside .

Many existing models run parsing as a preprocessing step and attend

over parse trees.



Neural CRF Parsing (Durrett and Klein, 2015; Kipperwasser and Goldberg, 2016)
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Syntactic Attention Network

1 Attention distribution (probability of a parse tree)

=⇒ Inside/outside algorithm

2 Gradients wrt attention distribution parameters: ∂L
∂θ

=⇒ Backpropagation through inside/outside algorithm

Forward/backward pass on inside-outside version of Eisner’s algorithm

(Eisner, 1996) takes O(T 3) time.
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Backpropagation through Inside-Outside Algorithm



Structured Attention Networks with a Parser (“Syntactic Attention”)
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Structured Attention Networks for Natural Language Inference

Dataset: Stanford Natural Language Inference (Bowman et al., 2015)

Model Accuracy %

No Attention 85.8

Hard parent 86.1

Simple Attention 86.2

Structured Attention 86.8

No attention: word embeddings only

“Hard” parent from a pipelined dependency parser

Simple attention (simple softmax instead of syntanctic attention)

Structured attention (soft parents from syntactic attention)



Structured Attention Networks for Natural Language Inference

Run Viterbi algorithm on the parsing layer to get the MAP parse:

ẑ = argmax
z

p(z |x, q)

$ The men are fighting outside a deli .
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Structured Attention Networks

Generalize attention to incorporate latent structure

Exact inference through dynamic programming

Training remains end-to-end.

Future work

Approximate differentiable inference in neural networks

Incorporate other probabilistic models into deep learning.

Compare further to methods using EM or hard structures.



Other Work: Lie-Access Neural Memory (Yang and Rush, 2017)
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