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The Binary Classification Task Encoder-Decoder vs. CNN Contributions Tuning
The Automated Evaluation of Scientific Writing Model Data Precision Recall  F, « Highest performing system (ensemble, as well - Post-hoc tuning was necessary to avoid
(AESW) Shared Task 2016: Given a sentence, R ANDOM N/A 03335 0.4992 0.4369 as CHAR separately) on the binary under-prediction
determine whether it needs to be edited (i.e., con- CNN-STATIC  Traming+word2vec 05349 0.7586 0.6274 classification Shared Task - CNN models: tuned the decision boundary to

maximize the Fi-score on the held-out tuning set

tains a grammatical error, broadly construed). CNN-NONSTATIC Training+word2vec 0.5365 0.7758 0.6343 - Demonstrated utility of a neural . Encoder-decoder models: tuned the bias weights
WORD-+ALL :raining 0.039 (). 7852 O'6j:08 attention-based model tor sentence-level (given as input to the final softmax layer generating the
\é\fHOARRD—fﬁLMPLE r__jra}n%ng 82283 82822 ggzgé ocrammatical error identification words/tags distribution) associated with the four
[raining . . .64 . . . . .
Data CHAR LS AMPLE Trainin 05506 0.8196 06579 - Our end-to-end approach does not have anno.tatlon tags via a coarse grld search by iteratively
_ 5 ' ' ' . . running beam search on the tuning set
. | Table 1: Experimental results on the development set exclud- separate components for candidate generation
» The AESW dataset is the first large-scale, ing the held-out 10k tuning subset. or re-ranking that make use of hand-tuned 070 =
pubhcly ava,l.labl.e profésgonally edited dataset of | rules or explicit syntax, nor do we employ s e s 30 e,
academic, scientific writing + The .encodeor—decoder models (and CHAR in separate classifiers for human-differentiated oo { o7 ‘.:'
« A collection of nearly 10,000 scientific journal partlcularg improve over the CNN models, at the <iibsets of errors S ) S m Word+all e
: n . . . N1 ! ! . . . E ¢ Word+sample
articles (Engineering, Computer Science, expense of training/testing tl.me « Bvidence to suggest modeling at the sub-word o s Chartall
Mathematics, Chemistry, Physics, etc.) - T'he +SAMPLE models are given & random lovel is beneficial , X e  Charrsample
« Training set consists of about 500,000 sentences sample of 200,000 sentences without edits and U
with errors and an additional 700,000 that are perform better than those given all error-free Tuning Weights
error-free sentences (+ALL). See also Figure 1.
_ , L : : Figure 1: F} scores for varying values applied additively to the
« Frrors are described at the token level with insert The models | | <del> | | works || </del> || <ins> || work || </ins> || <eos>
, , . . . f ' : : : . bias weights of the four annotation tags on the held-out 10k
and delete tags (see diagram at right) | | | | | : : : 5 - -
[+ OIt+ Ot oI~ It O O oI O] HHILE SUBSEL
Approach | ,
| T«a_ﬂ —ﬂ—-lTﬂ%—Aﬁ Final Results
. To establish a strong baseline on this new L, ] | . . . . . "
dataset, we utilize a CNN for binary 5 Model Precision Recall [}
classification, experimenting with word2vec: RANDOM 0.3607 0.6004 0.4507
=« Keeping the word vectors static (CNN-STATIC) ngh?m I I 3 H'ghiwa? H'ghgwav Highi“'“ Highiwa" H'ghiwa" H'ghiwa" ”‘g"i‘“"’ ”‘g"i“’“ ”'ghi’”“ ”'g"i“’a“' KNOWLET 0.6241 0.3685 0.4634
« Fine-tuning the vectors (CNN-NONSTATIC) ErIFTNSU_YZU gg%g 063984085 8?223
- We propose tWO enCOder_deCOder arChlteCtureS for Chari’ZNN -- . CharICNN Charicmm charicmm Charicmm charicmm CharECNN charicmm charicmm CharECNN CharECNN UW_SU 04145 08201 05507
this task, recasting the problem as translation ( NTNU-YZU  0.5025 0.7785 0.6108
(incorrect — correct) in order to train at the ’ : : ' ' : : ' ' CHAR-+SAMPLE  0.5112° 0.7841 0.6189
lowest larity of fations: i i i i COMBINATION  0.5444 0.7413 0.6278
OWESL gralullallly Ol alllOtallons. The models works <eos> The models <del> works </del> <ins> work </ins>

Table 2: Our final system results on test (143,802 sentences

« A word-based model (WORD) evaluated on the Shared Task CodalLab server) are highlighted.

= A character-based model (CHAR)

Character-aware Encoder-Decoder Architecture (Char)

« Fvaluation is via Fj at the sentence level

Conclusion
= On the final run on test, we use an ensemble of [llustration (above) of the CHAR model architecture translating an example source sentence into the
multiple encoder-decoder models and a CNN corrected target .
, , , , , | | N » Demonstrated comparatively strong results on
classifier (COMBIN ATION) = A CNN is applied over character embeddings to obtain a fixed dimensional representation of a word, which is given to a .
highway network (in light blue, above). the Shared Task, but many areas remain to be
= Qutput from the highway network is used as input to a LSTM encoder-decoder. explored
ACkﬂOWledgemeﬂtS = At each step of the decoder, its hidden state is interacted with the hidden states of the encoder to produce attention weights « Future work to examine , among, others:
(for each word in the encoder), which are used to obtain the context vector via a convex combination.
. | | . | » An end-to-end approach for languages such as Japanese
We would like to thank the Institute for Quantitative Social = The Context. vector is combined with the decgder hldder} Stat§ th.rough a one layer MLP (yellow), after which an affine . Approaches for incorporating additional error-free data
Science (IQSS) and the Harvard Initiative.: for Learning and transformation followed by a softmax is applied to obtain a distribution over the next word/tag. . Performance on the correction task
Teaching (HILT) for support and Jeffrey Ling for software de- = The MLP layer (yellow) is used as additional input (via concatenation) for the next time step. . User studies to assess the utility of correction vs.
velopment. = An equality check between the source and the highest scoring output sentence (via beam search) determines the binary label. identification
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